如需大数据开发整套视频(hadoop\hive\hbase\flume\sqoop\kafka\zookeeper\presto\spark):请联系QQ:1974983704 

Hadoop的前世今生网上有太多的文章介绍,这儿就不啰嗦了,直接介绍Hadoop的4大主要构成及HDFS的原理、特性

Hadoop运行模式

1.本地模式:一个节点,不会启动任何服务

2.伪分布式模式:一个节点,所有服务均运行在该节点上

3.分布式模式:多个节点

1、Hadoop构成:HDFS(分布式存储系统)

  HDFS特性:

    1.良好的扩展性

    2.高容错性(多备份性,保持数据不丢失)

    3.适合PB级以上海量数据的存储

  基本原理:

    1.将文件切分成等大的数据块,存储到多台机器上

    2.将数据切分、容错、负载均衡等功能透明化

    3.可将HDFS看成一个容量巨大、具有高容错性的磁盘

2、Hadoop构成:YARN(资源管理系统)

  Yarn是什么:

    1.负责集群的资源管理和调度

    2.使多种计算框架可以运行在一个集群中

  Yarn特点:

    1.良好的扩展性、高可用性(任何一个组件出现问题都不影响集群运行)

    2.对多种类型的应用程序进行统一管理和调度

    3.自带了多种用户调度器、适合共享集群环境

3.Hadoop构成:MapReduce(分布式计算框架)

  源于Google的MapReduce论文

  MapReduce特点:

    1.良好的扩展性(加的机器越多计算越快)

    2.高容错性

    3.适合PB级以上海量数据的离线处理

  如何执行:

    分为Map和Reduce两个阶段,先经过Map阶段很多任务并行处理,再经过Reduce阶段合并,先拆分再合并,分而治之

4、Hadoop构成:Hive(基于MR的数据仓库)

  1.构建在Hadoop之上的数据仓库,数据计算使用MapReduce,存储使用HDFS

  2.Hive定义了一种类SQL查询语言--HQL,类似sql但不完全相同(大部分相同)

  3.通常用于进行离线数据处理(采用MapReduce)

  4.可认为是一个HQL-MR的语言翻译器

HDFS原理、特性与基本架构

Hadoop Distributed File System(HDFS)

  • 易于扩展的分布式文件系统
  • 运行在大量普通廉价机器上,提供容错机制
  • 为大量用户提供性能不错的文件存取服务

HDFS优点

  1.高容错性:

    数据自动保存多个副本(默认为3份)

    副本丢失后,自动恢复

  2.适合批处理

    移动计算而非数据

    数据位置暴漏给计算框架

  3.适合大数据数量

    TB、PB级别数据

    百万规模以上的文件数量

  4.流式文件访问

    一次性写入,多次读取

    保证数据一致性

  5.可构建在廉价的机器上

    通过多副本提高可靠性

    提供了容错和恢复机制

HDFS缺点

  1.小文件存储

    小文件占用NameNode大量内存

    寻道时间超过读取时间

  2.并发写入、文件随机修改

    一个文件只能有一个写者(不能支持多线程写入)

    仅支持append(追加),不支持修改(如果修改会生成新的文件,删除旧文件)

  3.低延迟数据访问

    比如毫秒级(用MapReduce计算达不到毫秒级)

    低延迟与高吞吐率

HDFS基本框架与原理

1、HDFS设计思想

  HDFS是将一个文件分割成多个128M的block数据块(当文件小于128M的时候,存储block为文件大小,并非128M),按流式分发到多个节点,有个元数据存储block的顺序及分发到的节点

2.HDFS架构

主从架构(Master-Slave)

  • 主服务为namenode,从服务为datanode,主服务Active namenode容易存在单点故障,所以一般需要一个Standby namenode(在Active namendoe出现故障时即使恢复)
  • namenode与datanode直接的连接是通过“心跳机制”,datanode长时间未向namenode报告状态,视为该datanode故障
  • Active Namenode:主Master只有一个,管理HDFS的名称空间、管理数据库block映射信息、配置副本策略、处理客户端读写请求
  • Standby Namenode:NameNode的热备、定期合并fsimage和fsedits,推送给Namenode、当Active Namenode出现故障时,快速切换为新的Active Namenode
  • Datanode:Slave(有多个)、存储实际的数据块、执行数据块读写
  • Client:文件切分、与NameNode交互,获取文件位置信息、与DataNode交互读写数据、管理HDFS、访问HDFS

3、HDFS内部机制-写流程

  比如将1个block写入到datanode1、datanode2、datanode3,流式过程为:先将block发送到datanode1上,等datanode1写完该block,再由datanode1将block写到datanode2上,datanode2写入到datanode3

4、HDFS数据块(block)

1.文件被切分成固定大小的数据库

  默认为128M,可配置

  若文件大小不到128M,则单独存成一个block

2.为何数据块(128M)如此之大

  数据传输时间超过寻道时间(高吞吐率)

3.一个文件存储方式

  按大小切分成若干个block,存在不同节点上

  默认一个block有3个副本

Hadoop之HDFS优缺点、设计原理、框架的更多相关文章

  1. hadoop之hdfs及其工作原理

    hadoop之hdfs及其工作原理 (一)hdfs产生的背景 随着数据量的不断增大和增长速度的不断加快,一台机器上已经容纳不下,因此就需要放到更多的机器中,但这样做不方便维护和管理,因此需要一种文件系 ...

  2. hadoop中HDFS的NameNode原理

    1. hadoop中HDFS的NameNode原理 1.1. 组成 包括HDFS(分布式文件系统),YARN(分布式资源调度系统),MapReduce(分布式计算系统),等等. 1.2. HDFS架构 ...

  3. 大数据:Hadoop(HDFS 的设计思路、设计目标、架构、副本机制、副本存放策略)

    一.HDFS 的设计思路 1)思路 切分数据,并进行多副本存储: 2)如果文件只以多副本进行存储,而不进行切分,会有什么问题 缺点 不管文件多大,都存储在一个节点上,在进行数据处理的时候很难进行并行处 ...

  4. 【Hadoop】HDFS的运行原理

    博文已转移,请借一步说话http://www.weixuehao.com/archives/596 简介 HDFS(Hadoop Distributed File System )Hadoop分布式文 ...

  5. 2本Hadoop技术内幕电子书百度网盘下载:深入理解MapReduce架构设计与实现原理、深入解析Hadoop Common和HDFS架构设计与实现原理

    这是我收集的两本关于Hadoop的书,高清PDF版,在此和大家分享: 1.<Hadoop技术内幕:深入理解MapReduce架构设计与实现原理>董西成 著  机械工业出版社2013年5月出 ...

  6. Hadoop分布式文件系统(HDFS)设计

    Hadoop分布式文件系统是设计初衷是可靠的存储大数据集,并且使应用程序高带宽的流式处理存储的大数据集.在一个成千个server的大集群中,每个server不仅要管理存储的这些数据,而且可以执行应用程 ...

  7. Hadoop(六)之HDFS的存储原理(运行原理)

    前言 其实说到HDFS的存储原理,无非就是读操作和写操作,那接下来我们详细的看一下HDFS是怎么实现读写操作的! 一.HDFS读取过程 1)客户端通过调用FileSystem对象的open()来读取希 ...

  8. 【转载】Hadoop分布式文件系统HDFS的工作原理详述

    转载请注明来自36大数据(36dsj.com):36大数据 » Hadoop分布式文件系统HDFS的工作原理详述 转注:读了这篇文章以后,觉得内容比较易懂,所以分享过来支持一下. Hadoop分布式文 ...

  9. Hadoop之HDFS原理及文件上传下载源码分析(下)

    上篇Hadoop之HDFS原理及文件上传下载源码分析(上)楼主主要介绍了hdfs原理及FileSystem的初始化源码解析, Client如何与NameNode建立RPC通信.本篇将继续介绍hdfs文 ...

  10. Hadoop基础-Hdfs各个组件的运行原理介绍

    Hadoop基础-Hdfs各个组件的运行原理介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.NameNode工作原理(默认端口号:50070) 1>.什么是NameN ...

随机推荐

  1. 《基于CNN和SVM的人脸识别系统的设计与实现》论文笔记十六

    一.基本信息 标题:基于CNN和SVM的人脸识别系统的设计与实现 时间:2021 来源:计算机与数字工程 关键词: 人脸识别;卷积神经网络;支持向量机;深度学习; 二.研究内容 问题定义: 针对人脸识 ...

  2. 【5】python之基础语法

    1.编码格式 默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串. 当然你也可以为源码文件指定不同的编码: # -*- coding: cp-1252 ...

  3. tomcat 1 - Servlet 容器

    Socket socket = new Socket ( "yahoo.com", 80); OutputStream os = socket.getOutputStream(); ...

  4. VUE学习-组件通信

    vue组件通信 页面传值:$route/${prop} 组件传值: 父组件传值给子组件:参数传值 子组件传值给父组件:给父组件传过来函数传参数:通过插槽的v-slot,绑定参数 组件通信一般分为以下几 ...

  5. 树莓派4B安装Gogs

    https://www.labno3.com/2021/01/28/how-to-install-gogs-on-the-raspberry-pi/ https://gogs.io/docs/inst ...

  6. java8 stream流的使用

    List<Paper> list = new ArrayList<>();list.add(new Paper("m",2L));list.add(new ...

  7. WDA学习(24):Context Menu使用

    1.17 UI Element:Context Menu使用 本实例测试创建Context Menu. 1.创建Component,View: V_CONTEXT_MENU; 2.创建Context节 ...

  8. 上传镜像到harbor

    https://blog.csdn.net/weixin_45335305/article/details/123817541

  9. MySQL系列-详解mysql数据类型

    MySQL数据类型 (1)数值类型 1.整数型 2.浮点型 3.定点型 (2)日期时间类型 (3)字符串类型 MySQL字段属性 1.空\不为空值:NULL.NOT NULL 2.主键:primary ...

  10. maven install 报错 The POM for com.oracle:ojdbc6:jar:11.2.0.7.0 is missing, no dependency information available

    The POM for com.oracle:ojdbc6:jar:11.1.0.7.0 is missing, no dependency information available The POM ...