Graph Neural Networks:谱域图卷积
以下学习内容参考了:1,2,
0、首先回忆CNN,卷积神经网络的结构和特点


处理的数据特征:具有规则的空间结构(Euclidean domains),都可以采用一维或者二维的矩阵描述。(Convolutional neural network (CNN) gains great success on Euclidean data, e.g., image, text, audio, and video)。
什么是卷积:卷积即固定数量邻域结点排序后,与相同数量的卷积核参数相乘求和。
离散卷积本质就是一种加权求和。CNN中的卷积就是一种离散卷积,本质上就是利用一个共享参数的过滤器(kernel),通过计算中心像素点以及相邻像素点的加权和来构成feature map实现空间特征的提取,当然加权系数就是卷积核的权重系数(W)。
The power of CNN lies in: its ability to learn local stationary structures, via localized convolution filter, and compose them to form multi-scale hierarchical patterns.
Taking image data as an example, we can represent an image as a regular grid in the Euclidean space. CNN is able to exploit the shiftinvariance, local connectivity, and compositionality of image data. As a result, CNNs can extract local meaningful features that are shared with the entire data sets for various image analyses.
那么卷积核的系数如何确定的呢?是随机化初值,然后根据误差函数通过反向传播梯度下降进行迭代优化。这是一个关键点,卷积核的参数通过优化求出才能实现特征提取的作用,GCN的理论很大一部分工作就是为了引入可以优化的卷积参数。
1、图卷积网络GCN

生活中很多数据不具备规则的空间结构,称为Non Euclidean data,如,推荐系统、电子交易、分子结构等抽象出来的图谱。这些图谱中的每个节点连接不尽相同,有的节点有三个连接,有的节点只有一个连接,是不规则的结构。对于这些不规则的数据对象,普通卷积网络的效果不尽人意。CNN卷积操作配合pooling等在结构规则的图像等数据上效果显著,但是如果作者考虑非欧氏空间比如图(即graph),就难以选取固定的卷积核来适应整个图的不规则性,如邻居节点数量的不确定和节点顺序的不确定。

总结一下,图数据中的空间特征具有以下特点:
1) 节点特征:每个节点有自己的特征;(体现在点上)
2) 结构特征:图数据中的每个节点具有结构特征,即节点与节点存在一定的联系。(体现在边上)
总地来说,图数据既要考虑节点信息,也要考虑结构信息,图卷积神经网络就可以自动化地既学习节点特征,又能学习节点与节点之间的关联信息。
综上所述,GCN是要为除CV、NLP之外的任务提供一种处理、研究的模型。
图卷积的核心思想是利用『边的信息』对『节点信息』进行『聚合』从而生成新的『节点表示』。
借助于卷积神经网络对局部结构的建模能力及图上普遍存在的节点依赖关系,图卷积神经网络成为其中最活跃最重要的一支。

3、图卷积网络的两种理解方式
GCN的本质目的就是用来提取拓扑图的空间特征。 而图卷积神经网络主要有两类,一类是基于空间域或顶点域vertex domain(spatial domain)的,另一类则是基于频域或谱域spectral domain的。通俗点解释,空域可以类比到直接在图片的像素点上进行卷积,而频域可以类比到对图片进行傅里叶变换后,再进行卷积。
1)vertex domain(spatial domain):顶点域(空间域)
基于空域卷积的方法直接将卷积操作定义在每个结点的连接关系上,它跟传统的卷积神经网络中的卷积更相似一些。在这个类别中比较有代表性的方法有 Message Passing Neural Networks(MPNN)[1], GraphSage[2], Diffusion Convolution Neural Networks(DCNN)[3], PATCHY-SAN[4]等
2)spectral domain:频域方法(谱方法)
这就是谱域图卷积网络的理论基础了。这种思路就是希望借助图谱的理论来实现拓扑图上的卷积操作。从整个研究的时间进程来看:首先研究GSP(graph signal processing)的学者定义了graph上的Fourier Transformation,进而定义了graph上的convolution,最后与深度学习结合提出了Graph Convolutional Network。
基于频域卷积的方法则从图信号处理起家,包括 Spectral CNN[5], Cheybyshev Spectral CNN(ChebNet)[6], 和 First order of ChebNet(1stChebNet)[7] 等
论文Semi-Supervised Classification with Graph Convolutional Networks就是一阶邻居的ChebNet
定义图的邻接矩阵A以及度矩阵D:

定义图的Graph Laplancian 矩阵(刻画了信号在图上的平滑程度)


拉普拉斯矩阵是图上的一种拉普拉斯算子:






图的傅里叶变换

图的傅里叶逆变换

将两信号分别视为输入信号和卷积核,那么卷积操作可以定义为 ➢1)将空域信号转换到频域,然后相乘。 ➢2)将相乘的结果再转换到空域。


Shortcomings of Spectral graph CNN 谱域图卷积的三个缺点
进入实用化阶段:ChebyNet,GCN,


GCN:






Graph Neural Networks:谱域图卷积的更多相关文章
- 3D Graph Neural Networks for RGBD Semantic Segmentation
3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a ...
- 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...
- 论文解读(DAGNN)《Towards Deeper Graph Neural Networks》
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD ...
- 论文解读(GraphSMOTE)《GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks》
论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxi ...
- DAG-GNN: DAG Structure Learning with Graph Neural Networks
目录 概 主要内容 代码 Yu Y., Chen J., Gao T. and Yu M. DAG-GNN: DAG structure learning with graph neural netw ...
- 论文解读(GIN)《How Powerful are Graph Neural Networks》
Paper Information Title:<How Powerful are Graph Neural Networks?>Authors:Keyulu Xu, Weihua Hu, ...
- 论文解读(SelfGNN)《Self-supervised Graph Neural Networks without explicit negative sampling》
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. K ...
- 论文阅读 Streaming Graph Neural Networks
3 Streaming Graph Neural Networks link:https://dl.acm.org/doi/10.1145/3397271.3401092 Abstract 本文提出了 ...
- 论文解读(LA-GNN)《Local Augmentation for Graph Neural Networks》
论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Ting ...
随机推荐
- Go通过cobra快速构建命令行应用
来自jetbrains Go 语言现状调查报告 显示:在go开发者中使用go开发实用小程序的比例为31%仅次于web,go得益于跨平台.无依赖的特性,用来编写命令行或系统管理这类小程序非常不错. 本文 ...
- Python图像处理丨OpenCV+Numpy库读取与修改像素
摘要:本篇文章主要讲解 OpenCV+Numpy 图像处理基础知识,包括读取像素和修改像素. 本文分享自华为云社区<[Python图像处理] 二.OpenCV+Numpy库读取与修改像素> ...
- Java并发编程扩展(线程通信、线程池)
之前我说过,实现多线程的方式有4种,但是之前的文章中,我只介绍了两种,那么下面这两种,可以了解了解,不懂没关系. 之前的文章-->Java并发编程之多线程 使用ExecutorService.C ...
- python跑机器学习时报错:Process finished with exit code -1073740791 (0xC0000409)
emmm...第二次遇到这个错误了,好好的好好的卷积神经网络突然就跑不起了.就弹出一堆信息也不报那行代码错了... 记录一下: 两次解决方法相同,删h5py包 Process finished wit ...
- Es5 - 11 详解
一.ES简介 ECMAScript,欧洲计算机制造商协会 ES是一种标准,而JS是ES的一种实现 每年的ES版本中都会引入新特性 二.NRM的安装与使用 NRM是切换源的工具 ES6 2.1安装 wi ...
- ngx-lua实现高级限流方式一
基于POST请求体中的某个参数限流 背景 电商平台有活动,活动涉及优惠券的抢券,优惠券系统对大并发支持略差,为了保护整体系统平稳,因此在入口Nginx层对抢券接口做了一层限流. 完整实现如下: lua ...
- 操作系统实现-loader
博客网址:www.shicoder.top 微信:18223081347 欢迎加群聊天 :452380935 大家好呀,终于我们到了操作系统的loader部分了,loader也是操作系统中最重要的一个 ...
- C# 编写一个简单易用的 Windows 截屏增强工具
半年前我开源了 DreamScene2 一个小而快并且功能强大的 Windows 动态桌面软件.有很多的人喜欢,这使我有了继续做开源的信心.这是我的第二个开源作品 ScreenshotEx 一个简单易 ...
- MySQL存储过程入门了解
0.环境说明: mysql版本:5.7 1.使用说明 存储过程是数据库的一个重要的对象,可以封装SQL语句集,可以用来完成一些较复杂的业务逻辑,并且可以入参出参(类似于java中的方法的书写). ...
- 多线程05:unique_lock详解
unique_lock详解 一.unique_lock取代lock_guard unique_lock是个类模板,实际应用中,一般lock_guard(推荐使用):lock_guard取代了mutex ...