P5491 【模板】二次剩余
\(\text{Summary}\)
实际上是做法的归纳
一切皆是结论性的,没有证明!
模 \(p\) 意义下的二次剩余有 \(\frac{p-1}2\) 个,二次非剩余也恰有那么多
考虑解关于 \(x\) 的同余方程
\]
当 \(n=0\) 时,\(x=0\) 是唯一解
当 \(n \not= 0\) 时,若方程有解,则只有两个互为相反数的解
判断有无解:欧拉准则
考虑 \(n^{\frac{p-1}{2}}\) 模 \(p\) 的结果
由 \((n^{\frac{p-1}{2}})^2 \equiv 1 \pmod p\)
只其结果只为 \(1\) 或 \(-1\)
\(1\) 时有解,\(-1\) 时无解
求解的话,先随机找到一个 \(a\) 满足 \(a^2 - n\) 为二次非剩余,令 \(i^2 = a^2 - n \equiv -1 \pmod p\)
类似实部和虚部,定义这个 \(i\)
有
\]
证明的话,有
\(\text{Lemma 1}\)
\]
\(\text{Lemma 2}\)
\]
然后
(a+i)^{p+1} & \equiv (a+i)^p(a+i) \\
&\equiv (a+i)(a^p+i^p) \\
&\equiv (a+i)(a-i) \\
&\equiv a^2-i^2 \\
&\equiv n \pmod p
\end{aligned}
\]
\(p+1\) 为偶数,开方就很容易了
具体实现弄上“复数”即可
且 \((a+i)^{\frac{p+1}2}\) 的“虚部” 为 \(0\)
\(\text{Code}\)
#include <cstdio>
#include <algorithm>
#include <iostream>
#define IN inline
using namespace std;
typedef long long LL;
int T, n, p;
LL i2;
struct complex {
LL x, y;
IN complex(LL _x, LL _y) {x = _x, y = _y;}
IN bool operator == (complex a) {return (a.x == x && a.y == y);}
IN complex operator * (complex a) {
return complex((a.x * x % p + a.y * y % p * i2 % p) % p, (a.x * y % p + a.y * x % p) % p);
}
};
IN complex power(complex x, int y) {
complex s = complex(1, 0);
for(; y; y >>= 1, x = x * x) if (y & 1) s = s * x;
return s;
}
IN int check(LL a) {return power(complex(a, 0), p - 1 >> 1) == complex(1, 0);}
IN void solve() {
if (!n) {printf("0\n"); return;}
if (power(complex(n, 0), p - 1 >> 1) == complex(p - 1, 0)) {printf("Hola!\n"); return;}
LL a = rand() % p;
while (!a || check((a * a % p - n + p) % p)) a = rand() % p;
i2 = (a * a % p - n + p) % p;
int x0 = power(complex(a, 1), p + 1 >> 1).x, x1 = p - x0;
if (x0 > x1) swap(x0, x1);
printf("%d %d\n", x0, x1);
}
int main() {
scanf("%d", &T);
for(; T; --T) scanf("%d%d", &n, &p), solve();
}
P5491 【模板】二次剩余的更多相关文章
- 【模板】【数论】二次剩余Cipolla算法,离散对数BSGS 算法
Cipolla LL ksm(LL k,LL n) { LL s=1; for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo; return s; } n ...
- [zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)
Power of Fibonacci Time Limit: 5 Seconds Memory Limit: 65536 KB In mathematics, Fibonacci numbe ...
- 【learning】多项式开根详解+模板
概述 多项式开跟是一个非常重要的知识点,许多多项式题目都要用到这一算法. 用快速数论变换,多项式求逆元和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的开根. 前置技能 快速 ...
- HDU6128 二次剩余/二次域求二次剩余解/LL快速乘法取模
LINK 题意:求满足模p下$\frac{1}{a_i+a_j}\equiv\frac{1}{a_i}+\frac{1}{a_j}$的对数,其中$n,p(1\leq n\leq10^5,2\leq p ...
- [长期更新]模板&算法学习情况
这里仅作为自我检查用,模板代码请移步其他博文 标+的表示已学完,标?的表示需要进一步学习,标-的表示有计划但未开始学习,标*的表示暂时没有计划学习 数学 ?BSGS +FFT&NTT ?Luc ...
- 2019牛客暑期多校训练营(第九场)B:Quadratic equation (二次剩余求mod意义下二元一次方程)
题意:给定p=1e9+7,A,B. 求一对X,Y,满足(X+Y)%P=A; 且(X*Y)%P=B: 思路:即,X^2-BX+CΞ0; 那么X=[B+-sqrt(B^2-4C)]/2: 全部部分都要 ...
- Codechef:Fibonacci Number/FN——求通项+二次剩余+bsgs
题意 定义 $F_n$ 为 $$F_n = \left\{\begin{matrix}0, n=0\\ 1, n=1 \\F_{n-1} + F_{n-2}, n > 1\end{matrix} ...
- 二次剩余定理及Cipolla算法入门到自闭
二次剩余定义: 在维基百科中,是这样说的:如果q等于一个数的平方模 n,则q为模 n 意义下的二次剩余.例如:x2≡n(mod p).否则,则q为模n意义下的二次非剩余. Cipolla算法:一个解决 ...
- 【学习笔记】OI模板整理
CSP2019前夕整理一下模板,顺便供之后使用 0. 非算法内容 0.1. 读入优化 描述: 使用getchar()实现的读入优化. 代码: inline int read() { int x=0; ...
- ACM模板_axiomofchoice
目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...
随机推荐
- linux server设置开机自动连接WIFI
1.前言 之前买了一个工控机,装过几个OS(linux 发行版),但是一直没有细研究过流程,只是停留在能用就不管了,工控机自带无线网卡(和俩个有线网口),所以这篇文章好好介绍如何开机自动连接WIFI( ...
- orcl between and 时间
在网上查阅,大家都说between and两边都会包含,但是对于时期来讲,他会包含前者,不会包含后者. 也就是说求一个时间介于上周六到本周五的区间,用between and 需要计算出上周六的时间和本 ...
- jmeter ORA-00911: invalid character报错解决方法
今天通过jmeter进行Oracle数据库操作时,遇到一个小坑. 解决办法:去掉sql最后的分号.
- 定制.NET 6.0的Middleware中间件
大家好,我是张飞洪,感谢您的阅读,我会不定期和你分享学习心得,希望我的文章能成为你成长路上的垫脚石,让我们一起精进. 在本文中,我们将学习中间件,以及如何使用它进一步定制应用程序.我们将快速学习中间件 ...
- 使用Typora写博客,图片即时上传
背景 习惯使用markdown的人应该都知道Typora这个神器,它非常简洁高效.虽然博客园的在线markdown编辑器也不错,但毕竟是网页版,每次写东西需要登录系统-进后台-找到文章-编辑-保存草稿 ...
- 第一篇:前端基础之HTML
HTML介绍 Web服务本质 import socket sk = socket.socket() sk.bind(("127.0.0.1", 8080)) sk.listen(5 ...
- python的grpc环境安装
环境 ubuntu:bionic的docker image docker run -it ubuntu:bionic python的grpc环境安装 参考grpc官网:https://grpc.io/ ...
- [OpenCV实战]8 深度学习目标检测网络YOLOv3的训练
目录 1 数据集 1.1 下载openImages雪人数据[约1.5小时] 1.2 训练集测试集拆分 2 Darknet 2.1 下载并构建Darknet 2.2 修改代码以定期保存模型文件 2.3 ...
- 在 C# 9 中使用 foreach 扩展
在 C# 9 中,foreach 循环可以使用扩展方法.在本文中,我们将通过例子回顾 C# 9 中如何扩展 foreach 循环. 代码演示 下面是一个对树形结构进行深度优先遍历的示例代码: usin ...
- Git使用记录 - 持续更新
本地生成 sshkey 打开git命令工具 cd ~/.ssh ssh-keygen -t rsa -C "实际的eamil地址" ··· // 一路回车,出现以下则说明成功 Yo ...