Sup, inf convolution for convex functions
Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.
Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
Since we can not find a direct relevant reference for the proof, we give one here.
Assume that
\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}
Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}
Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.
Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?
Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.
By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.
Sup, inf convolution for convex functions的更多相关文章
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization
以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...
- Spatial convolution
小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...
- Convex optimization 凸优化
zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 【论文翻译】NIN层论文中英对照翻译--(Network In Network)
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...
- CCJ PRML Study Note - Chapter 1.6 : Information Theory
Chapter 1.6 : Information Theory Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...
- [BOOK] Applied Math and Machine Learning Basics
<Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...
- 【翻译】给初学者的 Neural Networks / 神经网络 介绍
本文翻译自 SATYA MALLICK 的 "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...
- Keras 自适应Learning Rate (LearningRateScheduler)
When training deep neural networks, it is often useful to reduce learning rate as the training progr ...
随机推荐
- 【大型软件开发】开发日志(五).net框架与C++的融合:CLR——C++调用C#的DLL
做什么? 先说一下场景,现在正在开发一个Qt ActiveServer,也就是用一个应用程序去向其他的组件暴露接口,以达到提供服务的目的. 然后新版的框架要提供大部分功能,也就是要重做大部分模块.现在 ...
- 【博图scl语言】313-2dp
①如果 if(***) then *** := ***; end_if; ②循环 for n1:=1 to 50 by 1 do end_for; WHILE #n1 < 54 DO END_W ...
- Ubuntu上安装TensorFlow
一.更新环境 sudo apt-get update sudo apt-get install golang python3-dev python-dev libcupti-dev libjpeg- ...
- @NotNull,@NotBlank,@NotEmpty注解的区别
开发中常看见@NotNull,@NotBlank,@NotEmpty三个注解,但却没有深入了解过,下面介绍一下他们的应用场景和区别 @NotNull:主要用在基本数据类型上(Int,Integer,D ...
- 微信h5调分享功能
功能背景: 基于微信公众号的h5商城页面,实现特定商品的分享,包括朋友圈和好友分享功能. 代码实现(以vue项目为例): 首先贴上官方开发文档:https://developers.weixin.qq ...
- excel添加下拉列表
2016年数据验证,2010是数据校验
- CH32F103C8T6调试口Disable后的修复办法
1.问题描述 因为软件编程,将CH32F103的 debug disable了,无法通过仿真器下载程序. 2. 修复 2.1 解决思路 利用厂家给的串口ISP进行下载(HUSB或者COM) 2.2 硬 ...
- PK获取面积
BOOL PK_AskFaceAreas(tag_t face_tag, double tol, double &areas) {//获得面积 tag_t ps_tag = NULL_TAG; ...
- nodejs mongoose连接mongodb报错,command find requires authentication
MongoError: command find requires authentication at Connection.<anonymous> (/home/Map/node_mod ...
- Java基础学习:12、类变量和类方法(静态变量/方法)
一.类变量: 1.定义:类变量也叫静态变量,是该类所有对象(一个类可以new多个对象)共享的一个变量,任何一个该类变量去访问它时,取到的都是相同的值,同样一个该类的对象去修改它时,修改的也是同一个变量 ...