Sup, inf convolution for convex functions
Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.
Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
Since we can not find a direct relevant reference for the proof, we give one here.
Assume that
\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}
Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}
Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.
Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?
Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.
By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.
Sup, inf convolution for convex functions的更多相关文章
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization
以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...
- Spatial convolution
小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...
- Convex optimization 凸优化
zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 【论文翻译】NIN层论文中英对照翻译--(Network In Network)
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...
- CCJ PRML Study Note - Chapter 1.6 : Information Theory
Chapter 1.6 : Information Theory Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...
- [BOOK] Applied Math and Machine Learning Basics
<Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...
- 【翻译】给初学者的 Neural Networks / 神经网络 介绍
本文翻译自 SATYA MALLICK 的 "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...
- Keras 自适应Learning Rate (LearningRateScheduler)
When training deep neural networks, it is often useful to reduce learning rate as the training progr ...
随机推荐
- LeetCode-2039 网络空闲的时刻
来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/the-time-when-the-network-becomes-idle 题目描述 给你一个有 ...
- pdf.js打开后的pdf文件
可用pdf.js在h5打开pdf文件.注意,在本地打不开,一定要在部署环境. 方法:<a href="../../pdf/web/viewer.html?file=../../pdf/ ...
- 百度脑图kityminder
KityMinder Editor 是一款强大.简洁.体验优秀的脑图编辑工具,适合用于编辑树/图/网等结构的数据. 编辑器由百度 FEX 基于 kityminder-core 搭建,并且在百度脑图中使 ...
- Educational Codeforces Round 138 (Rated for Div. 2) - D. Counting Arrays
数论 + 计数 Problem - D - Codeforces 题意 给定整数 \(n\;(1<=n<=3e5),\;m\;(1<=m<=1e12)\) 要求求长度为 \(n ...
- Kubernetes v1.22 编译 kubeadm 修改证书有效期到 100 年
此方法支持以下 kubeadm版本 v1.22到v1.25 kubeadm 默认证书为一年,一年过期后,会导致 api service 不可用,使用过程中会出现:x509: certificate h ...
- 2.4 在DispatcherServlet的service方法中,通过ServletPath获取对应的Controller对象
@Override protected void service(HttpServletRequest request, HttpServletResponse response) throws Se ...
- N63050 第十六周运维作业
第十六周 就业和全程班小伙伴本周学习内容: 第三十一天: 高性能服务器nginx 1LVS的跨网段实现 2LVS的防火墙标记和持久连接及高可用实现 3web服务和IO介绍 4IO复用模型 5nginx ...
- u8g2 资料汇集
移植U8g2 https://www.cnblogs.com/frozencandles/p/16358483.html 函数接口说明: https://github.com/olikraus/u8g ...
- React Navite环境搭建
俗话说"工欲善其事,必先利其器."所以,我们第一步就是搭建React Native开发坏境. 一.安装Node.js.npm.yarn 1.1 React native需要借助no ...
- php的几种接值方式
1.传单个参数 单个参数这种比较简单,例如 想像edit操作里面传递一个id值,如下写法__URL__/edit/id/1 http://localhost/index.php/user/edit/i ...