Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.

Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

Since we can not find a direct relevant reference for the proof, we give one here.

Assume that

\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}

Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}

Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}

Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.

Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?

Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.

By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.

Sup, inf convolution for convex functions的更多相关文章

  1. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  2. 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization

    以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...

  3. Spatial convolution

    小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...

  4. Convex optimization 凸优化

    zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...

  5. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  6. 【论文翻译】NIN层论文中英对照翻译--(Network In Network)

    [论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...

  7. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  8. [BOOK] Applied Math and Machine Learning Basics

    <Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...

  9. 【翻译】给初学者的 Neural Networks / 神经网络 介绍

    本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...

  10. Keras 自适应Learning Rate (LearningRateScheduler)

    When training deep neural networks, it is often useful to reduce learning rate as the training progr ...

随机推荐

  1. LeetCode-2039 网络空闲的时刻

    来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/the-time-when-the-network-becomes-idle 题目描述 给你一个有 ...

  2. pdf.js打开后的pdf文件

    可用pdf.js在h5打开pdf文件.注意,在本地打不开,一定要在部署环境. 方法:<a href="../../pdf/web/viewer.html?file=../../pdf/ ...

  3. 百度脑图kityminder

    KityMinder Editor 是一款强大.简洁.体验优秀的脑图编辑工具,适合用于编辑树/图/网等结构的数据. 编辑器由百度 FEX 基于 kityminder-core 搭建,并且在百度脑图中使 ...

  4. Educational Codeforces Round 138 (Rated for Div. 2) - D. Counting Arrays

    数论 + 计数 Problem - D - Codeforces 题意 给定整数 \(n\;(1<=n<=3e5),\;m\;(1<=m<=1e12)\) 要求求长度为 \(n ...

  5. Kubernetes v1.22 编译 kubeadm 修改证书有效期到 100 年

    此方法支持以下 kubeadm版本 v1.22到v1.25 kubeadm 默认证书为一年,一年过期后,会导致 api service 不可用,使用过程中会出现:x509: certificate h ...

  6. 2.4 在DispatcherServlet的service方法中,通过ServletPath获取对应的Controller对象

    @Override protected void service(HttpServletRequest request, HttpServletResponse response) throws Se ...

  7. N63050 第十六周运维作业

    第十六周 就业和全程班小伙伴本周学习内容: 第三十一天: 高性能服务器nginx 1LVS的跨网段实现 2LVS的防火墙标记和持久连接及高可用实现 3web服务和IO介绍 4IO复用模型 5nginx ...

  8. u8g2 资料汇集

    移植U8g2 https://www.cnblogs.com/frozencandles/p/16358483.html 函数接口说明: https://github.com/olikraus/u8g ...

  9. React Navite环境搭建

    俗话说"工欲善其事,必先利其器."所以,我们第一步就是搭建React Native开发坏境. 一.安装Node.js.npm.yarn 1.1 React native需要借助no ...

  10. php的几种接值方式

    1.传单个参数 单个参数这种比较简单,例如 想像edit操作里面传递一个id值,如下写法__URL__/edit/id/1 http://localhost/index.php/user/edit/i ...