Luogu1769 淘汰赛制_NOI导刊2010提高(01)(概率DP)
第\(i\)次位置在\(pos_0 / 2^{i - 1}\)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
double f[11][2027];
int won[2027][2027];
int main(){
int n;
io >> n;
int m = 1 << n;
R(i,1,m){
R(j,1,m){
io >> won[i][j];
}
}
R(i,1,m){
f[0][i] = 1;
}
R(i,1,n){
R(j,1,m){
int pos = ceil((double)j / (double)(1 << (i - 1)));
pos = (pos & 1) ? pos + 1 : pos - 1;
R(k, pos * (1 << (i - 1)) - (1 << (i - 1)) + 1, pos * (1 << (i - 1))) {
f[i][j] += f[i - 1][j] * won[j][k] / 100 * f[i - 1][k];
}
}
}
double maxx = 0.0;
int ans;
R(i,1,m){
if(f[n][i] > maxx){
maxx = f[n][i];
ans = i;
}
}
printf("%d", ans);
return 0;
}
Luogu1769 淘汰赛制_NOI导刊2010提高(01)(概率DP)的更多相关文章
- 洛谷 P1769 淘汰赛制_NOI导刊2010提高(01)
P1769 淘汰赛制_NOI导刊2010提高(01) 题目描述 淘汰赛制是一种极其残酷的比赛制度.2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐.每一轮中,将所有参加 ...
- 淘汰赛制_NOI导刊2010提高(01)
题目描述 淘汰赛制是一种极其残酷的比赛制度.2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐.每一轮中,将所有参加该轮的选手按标号从小到大排序后,第1位与第2位比赛,第 ...
- P1771 方程的解_NOI导刊2010提高(01)
P1771 方程的解_NOI导刊2010提高(01) 按题意用快速幂把$g(x)$求出来 发现这不就是个组合数入门题吗! $k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法? 根据插板法, ...
- 方程的解_NOI导刊2010提高(01) 组合数
题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...
- 洛谷P1771 方程的解_NOI导刊2010提高(01)
题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...
- P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化
多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...
- P1794 装备运输_NOI导刊2010提高(04)
P1794 装备运输_NOI导刊2010提高(04) 题目描述 德国放松对英国的进攻后,把矛头指向了东边——苏联.1943年初,东线的战斗进行到白热化阶段.据可靠情报,90余万德国军队在库尔斯克准备发 ...
- 洛谷P1776 宝物筛选_NOI导刊2010提高(02)
P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...
- P1799 数列_NOI导刊2010提高(06)
P1799 数列_NOI导刊2010提高(06)f[i][j]表示前i个数删去j个数得到的最大价值.if(i-j==x) f[i][j]=max(f[i][j],f[i-1][j]+1); else ...
随机推荐
- axios的请求参数格式(get、post、put、delete)
1.get请求方式: axios.get(url[, config]) // [字符拼接型]axios.get(url?id=123&status=0') // 等同于 axios.get(u ...
- ptorch常用代码梯度篇(梯度裁剪、梯度累积、冻结预训练层等)
梯度裁剪(Gradient Clipping) 在训练比较深或者循环神经网络模型的过程中,我们有可能发生梯度爆炸的情况,这样会导致我们模型训练无法收敛. 我们可以采取一个简单的策略来避免梯度的爆炸,那 ...
- syc-day2
第1题:mod注意负数. 第2题:dp 第3题:构造(奇偶性) 第4题:线段树
- 使用kubeseal加密和管理k8s集群的secret
使用kubeseal加密和管理k8s集群的secret 在k8s的管理过程中,像secret这种资源并不好维护,kubeseal提供了一种相对简单的方式来对原始secret资源进行加密,并通过控制器进 ...
- WinForms拖控件拖到天荒地老
更新记录: 2022年4月15日:本文迁移自Panda666原博客,原发布时间:2021年4月18日. 2022年4月15日:更新自动生成Web CURD工具. 说明 Winforms的控件拖起来是真 ...
- el-select数据量过大引发卡顿,怎么办?
本文分享自华为云社区<解决el-select数据量过大的卡顿的两种思路与一种实施方案>,作者: KevinQ. 经典问题:在测试环境好好的,怎么到正式环境就不行了? --本文:数据量变了. ...
- Tomcat部署界面使用burp爆破
打开界面显示私密连接,正常抓包. 抓包查看Authorization的数据 Basic 后面的数据是经过base64加密后的.格式为admin:123456 勾选对应参数,payload设置为Cust ...
- JavaScript中DOM查询封装函数
在JavaScript中可以通过BOM查询html文档中的元素,也就是所谓的在html中获取对象然后对它添加一个函数. 常用的方法有以下几种: ①document.getElementById() 通 ...
- UiPath录制器的介绍和使用
一.录制器(Recording)的介绍 录制器是UiPath Studio的重要组成部分,可以帮助您在自动化业务流程时节省大量时间.此功能使您可以轻松地在屏幕上捕获用户的动作并将其转换为序列. 二.录 ...
- Windows下maven配置环境变量
右键 "计算机",选择 "属性",之后点击 "高级系统设置",点击"环境变量",来设置环境变量,有以下系统变量需要配置: ...