1834: [ZJOI2010]network 网络扩容

Time Limit: 3 Sec  Memory Limit: 64 MB

Submit: 3394  Solved: 1774

[Submit][Status][Discuss]

Description

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。

Input

输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。

Output

输出文件一行包含两个整数,分别表示问题1和问题2的答案。

Sample Input

5 8 2

1 2 5 8

2 5 9 9

5 1 6 2

5 1 1 8

1 2 8 7

2 5 4 9

1 2 1 1

1 4 2 1

Sample Output

13 19

30%的数据中,N<=100

100%的数据中,N<=1000,M<=5000,K<=10

首先T1打板就好了

本题难点在T2,如何最小费用扩展网络?

其实就是最小费用流嘛

我们对所有的原边再加一条流量无限的费用为w的边,再加一个超级源指向源点,容量K费用0

再跑一遍费用流就好了

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1005,maxm = 30005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N,M,K,head[maxn],nedge = 0,d[maxn],cur[maxn],S,T,p[maxn],f[maxn];
bool vis[maxn];
struct EDGE{int from,to,f,w,next;}edge[maxm];
inline void build(int u,int v,int f,int w){
edge[nedge] = (EDGE){u,v,f,w,head[u]}; head[u] = nedge++;
edge[nedge] = (EDGE){v,u,0,-w,head[v]}; head[v] = nedge++;
}
bool bfs(){
queue<int> q;
REP(i,N) vis[i] = false,d[i] = INF;
vis[S] = true; d[S] = 0; q.push(S);
int u,to;
while (!q.empty()){
u = q.front();
q.pop();
Redge(u) if (edge[k].f && !vis[to = edge[k].to]){
d[to] = d[u] + 1;
vis[to] = true;
q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int flow = 0,f,to;
if (cur[u] == -2) cur[u] = head[u];
for (int& k = cur[u]; k != -1; k = edge[k].next)
if (d[to = edge[k].to] == d[u] + 1 && (f = dfs(to,min(minf,edge[k].f)))){
edge[k].f -= f;
edge[k ^ 1].f += f;
flow += f;
minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){fill(cur,cur + maxn,-2); flow += dfs(S,INF);}
return flow;
}
int mincost(){
int cost = 0,flow = 0;
while (true){
queue<int> q;
for (int i = 0; i <= N; i++) d[i] = INF,vis[i] = false;
d[S] = 0; f[S] = INF; p[S] = 0;
q.push(S);
int to,u;
while (!q.empty()){
u = q.front(); q.pop();
vis[u] = false;
Redge(u) if (edge[k].f && d[to = edge[k].to] > d[u] + edge[k].w){
d[to] = d[u] + edge[k].w; p[to] = k; f[to] = min(f[u],edge[k].f);
if (!vis[to]) q.push(to),vis[to] = true;
}
}
if (d[T] == INF) break;
flow += f[T];
cost += f[T] * d[T];
u = T;
while (u != S){
edge[p[u]].f -= f[T];
edge[p[u] ^ 1].f += f[T];
u = edge[p[u]].from;
}
}
return cost;
}
int main(){
memset(head,-1,sizeof(head));
N = RD(); M = RD(); K = RD(); S = 1; T = N;
int a,b,f,w;
while (M--){
a = RD(); b = RD(); f = RD(); w = RD();
build(a,b,f,w);
}
int ans1 = maxflow(),ans2,E = nedge;
for (int i = 0; i < E; i += 2){
build(edge[i].from,edge[i].to,INF,edge[i].w);
edge[i].w = edge[i ^ 1].w = 0;
}
S = 0; build(S,1,K,0);
ans2 = mincost();
cout<<ans1<<' '<<ans2<<endl;
return 0;
}

BZOJ1834 [ZJOI2010]network 网络扩容 【最大流,费用流】的更多相关文章

  1. BZOJ1834 [ZJOI2010]network 网络扩容(最小费用最大流)

    挺直白的构图..最小费用最大流的定义. #include<cstdio> #include<cstring> #include<queue> #include< ...

  2. BZOJ 1834: [ZJOI2010]network 网络扩容(网络流+费用流)

    一看就知道是模板题= = ,不说什么了= = PS:回去搞期末了,暑假再来刷题了 CODE: #include<cstdio> #include<iostream> #incl ...

  3. [BZOJ1834][ZJOI2010]network 网络扩容 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 3330  Solved: 1739 [Subm ...

  4. 【最大流】【费用流】bzoj1834 [ZJOI2010]network 网络扩容

    引用题解: 最大流+费用流. 第一问最大流即可. 第二问为“最小费用最大流”. 由题意,这一问的可转化为在上一问的“残量网络”上,扩大一些边的容量,使能从新的图中的最大流为k. 那么易得:对于还有剩余 ...

  5. bzoj1834: [ZJOI2010]network 网络扩容 费用流

    bzoj1834 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容 ...

  6. 2018.10.13 bzoj1834: [ZJOI2010]network 网络扩容(最大流+费用流)

    传送门 网络流水题啊. 第一问直接放心跑最大流(本来还以为有什么tricktricktrick). 第二问就直接把原来的边(u,v,c,w)(u,v,c,w)(u,v,c,w)变成(u,v,c,0)( ...

  7. bzoj1834 [ZJOI2010]network 网络扩容

    第一问跑最大流,第二问新建一条边连接0和1,流量为上第一问的答案+k,费用为0,接下来图中每条边拆成两条边,第一条容量为C费用为0,第二条容量无穷费用为W,再跑一遍费用流即可. 代码 #include ...

  8. 【费用流】bzoj1834: [ZJOI2010]network 网络扩容

    还是稍微记一下这个拆点模型吧 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求:  1.在不扩容的情况下,1到N的最大流:  ...

  9. BZOJ 1834: [ZJOI2010]network 网络扩容 最小费用流_最大流_残量网络

    对于第一问,跑一遍最大流即可. 对于第二问,在残量网络上的两点间建立边 <u,v>,容量为无限大,费用为扩充费用. 跑一遍最小费用流即可. Code: #include <vecto ...

随机推荐

  1. android 学习六 构建用户界面和使用控件

    1.常用Android控件最终都会继承自View类 2.ViewGroup是一些布局类列表的基类,包括View和ViewGroup 3.构造界面的三种方法    a.完全使用代码(太灵活,而不好维护) ...

  2. 一次IPC无法创建的问题

    背景说明:         后台子系统都是运行在pc上的linux         系统有多个子系统,有一个子系统负责统一启停其他子系统,这里把这个子系统称为olddriver.         ol ...

  3. Eclipse 常用快捷键 个性设置(Mac)

    推荐编程使用Mac 要是非要一个原因 那就是Apple工程师用Mac Google工程师也用Mac 1. 常用快捷键 Mac自带 Command + ←  跳到当前文本行头 Command + →  ...

  4. C++11 TypeList 妙用

    源码展示: #include <iostream> using namespace std; template <typename ... Args> struct typel ...

  5. Siki_Unity_1-9_Unity2D游戏开发_Roguelike拾荒者

    Unity 1-9 Unity2D游戏开发 Roguelike拾荒者 任务1:游戏介绍 Food:相当于血量:每走一步下降1,吃东西可以回复(果子10药水20),被怪物攻击会减少中间的障碍物可以打破, ...

  6. Mongo DB Java操作

    1.首先下载Mongo DB java 驱动 2.操作Mongo 增删改查 package com.sjjy.mongo; import java.util.ArrayList;import java ...

  7. Java学习 · 初识 面向对象深入一

    面向对象深入 1.面向对象三大特征 a) 继承 inheritance 子类可以从父类继承属性和方法 子类可以提供自己的属性方法 b) 封装 encapsulation 对外隐藏某些属性和方法 对外公 ...

  8. 使用 Gradle 配置java项目

    注意点 除非调试,不要print ,否则任务不会按照依赖的顺序执行,因为我们自己喜欢调试用print,但是会打乱执行顺序. 排除测试文件: sourceSets.main.java { srcDir ...

  9. HADOOP docker(一):安装hadoop实验集群(略操蛋)

    一.环境准备 1.1.机器规划 主机名    别名    IP     角色 9321a27a2b91 hadoop1 172.17.0.10 NN1 ZK RM 7c3a3c9cd595 hadoo ...

  10. Python中的名字隐藏

    Python对于module文件中的name是没有private和public区分的,严格来说,在module文件重定义的任何name,都可以被外界访问.但是,对于 from module imort ...