传送门

Description

无向连通图 \(G\) 有 \(n\) 个点, \(n-1\) 条边。点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\) ,每条边的长度均为 \(1\) 。图上两点 \((u, v)\) 的距离定义为 \(u\) 点到 \(v\) 点的最短距离。对于图 \(G\) 上的点对 \((u, v)\) ,若它们的距离为 \(2\) ,则它们之间会产生 \(W_v \times W_u\) 的联合权值。

Input

第一行包含 \(1\) 个整数 \(n\) 。

接下来 \(n-1\) 行,每行包含 \(2\) 个用空格隔开的正整数 \(u,v\) ,表示编号为 \(u\) 和编号为 \(v\) 的点之间有边相连。

最后 \(1\) 行,包含 \(n\) 个正整数,每两个正整数之间用一个空格隔开,其中第 \(i\) 个整数表示图 \(G\) 上编号为 \(i\) 的点的权值为 \(W_i\) 。

Output

输出共 \(1\) 行,包含 \(2\) 个整数,之间用一个空格隔开,依次为图 \(G\) 上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对 \(10007\) 取余。

Sample Input

5
1 2
2 3
3 4
4 5
1 5 2 3 10

Sample Output

20 74

Hint

对于100%的数据, \(1 \leq n \leq 200000, 0 \leq W_i \leq 10000\) 。

Solution

比较显然的树形递推。

我们考虑对于一棵树,如果能知道根节点的所有以他的儿子为根的子树的答案,可以非常方便的得到以根节点为根的树的答案。这样状态就得以确定了。我们使用\(f(i)\)来代表以i为根的子树的答案。

对于转移,我们考虑根节点的答案首先是儿子的累加和,其次,根节点对孙子能够构成联合权值,这些都可以在枚举儿子的时候方便的计算出来。最后考虑任意儿子之间会产生联合权值。朴素做法当然是把儿子都存下来然后互相乘起来,这样的复杂度是\(O(n^2)\),会被菊花图卡吐血。

因为前面的儿子\(\times\)后面的儿子显然等于反过来乘,所以我们只需要前面的儿子\(\times\)后面的,最后把答案乘二即可。考虑对于根节点的第\(i\)个儿子,它对答案的贡献是【它的权值乘上它前面\(i-1\)儿子的权值的积】的和,根据乘法结合律,提取该节点的权值,它对答案的贡献就是它的权值乘上【前面儿子的的权值的和】的积这样我们可以直接维护他前面所有儿子的和,然后乘上该节点的权值,加入答案即可。

Code

#include<ctime>
#include<cstdio>
#include<cstdlib>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[50];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if (lst=='-') x=-x;
} template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) {putchar('-');x=-x;}
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T &a,const T &b) {if(a>b) return a;return b;}
template <typename T>
inline T mmin(const T &a,const T &b) {if(a<b) return a;return b;}
template <typename T>
inline T mabs(const T &a) {if(a<0) return -a;return a;} template <typename T>
inline void mswap(T &a,T &b) {T temp=a;a=b;b=temp;} const int maxn = 200010;
const int maxm = 400010;
const int MOD = 10007; struct Edge {
int to,nxt;
};
Edge edge[maxm];int hd[maxn],ecnt;
inline void cont(ci from,ci to) {
Edge &e=edge[++ecnt];
e.to=to;e.nxt=hd[from];hd[from]=ecnt;
} int a,b; int n,ans;
int MU[maxn];
int frog[maxn]; void dfs(ci,ci); int main() {
srand(time(NULL));
qr(n);
for(rg int i=1;i<n;++i) {
a=b=0;qr(a);qr(b);
cont(a,b);cont(b,a);
}
for(rg int i=1;i<=n;++i) qr(MU[i]);
int rt=rand()%n+1;
dfs(rt,0);
write(ans,' ',true);
write((frog[rt]<<1)%MOD,'\n',true);
} void dfs(ci k,ci fa) {
int _temp=0,_ans1=0,_ans2=0;
for(rg int i=hd[k];i;i=edge[i].nxt) {
int to=edge[i].to;
if(to==fa) continue;
frog[k]=(frog[k]+_temp*MU[to])%MOD;
_temp=(MU[to]+_temp)%MOD;
if(MU[to]>=_ans1) _ans2=_ans1,_ans1=MU[to];else if(MU[to]>_ans2) _ans2=MU[to];
ans=mmax(ans,_ans1*_ans2);
dfs(to,k);
frog[k]=(frog[k]+frog[to])%MOD;
for(rg int j=hd[to];j;j=edge[j].nxt) {
int &tt=edge[j].to;
if(tt==k) continue;
int _a=MU[tt]*MU[k];
frog[k]=(frog[k]+_a)%MOD;
ans=mmax(ans,_a);
}
}
}

Summary

当发现一个小部分因为复杂度超标而不可做的时候,不妨通过一些数学分析将复杂度降低从而获得正确的复杂度

【树形DP】【P1351】 【NOIP2014D1T2】联合权值的更多相关文章

  1. 洛谷 题解 P1351 【联合权值】

    Problem P1351 [联合权值] record 用时: 99ms 空间: 13068KB(12.76MB) 代码长度: 3.96KB 提交记录: R9883701 注: 使用了 o1 优化 o ...

  2. 【洛谷P1351】联合权值

    我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include< ...

  3. 【题解】洛谷P1351 [NOIP2014TG] 联合权值(树形结构+DFS)

    题目来源:洛谷P1351 思路 由题意可得图为一棵树 在一棵树上距离为2的两个点有两种情况 当前点与其爷爷 当前点的两个儿子 当情况为当前点与其爷爷时比较好操作 只需要在传递时不仅传递父亲 还传递爷爷 ...

  4. P1351 联合权值(树形dp)

    P1351 联合权值 想刷道水题还交了3次.....丢人 (1.没想到有两个点都是儿子的状况 2.到处乱%(大雾)) 先dfs一遍处理出父亲$fa[x]$ 蓝后再一遍dfs,搞搞就出来了. #incl ...

  5. NOIP2014提高组 联合权值(距离为2的树形dp)

    联合权值 题目描述 无向连通图 GG 有 nn 个点,n-1n−1 条边.点从 11 到 nn 依次编号,编号为 ii 的点的权值为 W_iWi​,每条边的长度均为 11.图上两点 (u, v)(u, ...

  6. Vijos1906 联合权值 NOIP2014Day1T2 树形动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - Vijos1906 题意概括 有一棵树,每一个节点都有一个权值w[i].下面说的x,y都是该树中的节点. 对于 ...

  7. P1351 联合权值[鬼畜解法]

    题目描述 无向连通图 G 有 n 个点,n−1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi​,每条边的长度均为 1.图上两点 (u,v) 的距离定义为 u 点到 v 点的最短距离 ...

  8. 联合权值dp

    联合权值 洛谷中可找到 题目传送门https://www.luogu.org/problemnew/show/P1351 这题我就得了70分(TLE)  GG了 就是遍历它孩子的孩子(爷爷和孙子),然 ...

  9. 洛谷 P1351 联合权值 题解

    P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条 ...

随机推荐

  1. RAP2环境搭建整理(超详细)

    RAP2是阿里开源的接口管理平台,最近搭建了一下,将部署文档整理如下: 如果途中遇坑会在文章末尾记录下来嘻嘻 首先,确定环境是否部署好. RAP2所需的环境为: node.js 8.9.4+ mysq ...

  2. 怎样下载JDBC驱动

    MySQL官网: https://www.mysql.com/ 请注意: 需要把mysql-connector-java-5.1.45-bin.jar放到C:\JMeter\apache-jmeter ...

  3. Linux 文件的常识

    文件 文件的分类 文件 目录 链接 区分办法,ls -la 查看 十个标志符中的第一个 如:drwxrwxr-x. 2 normal normal 4096 8月 31 23:43 dir 目录是d ...

  4. 【isJson( jsonObj )】判断是否是JSON实例

    判断是否是JSON实例: 原型:isJson( jsonObj ) 说明:判断对象是否是JSON实例 返回:[true | false] 示例: <% Set jsonObj1 = toJson ...

  5. 孤荷凌寒自学python第八十天开始写Python的第一个爬虫10

    孤荷凌寒自学python第八十天开始写Python的第一个爬虫10 (完整学习过程屏幕记录视频地址在文末) 原计划今天应当可以解决读取所有页的目录并转而取出所有新闻的功能,不过由于学习时间不够,只是进 ...

  6. 文件上传:CommonsMultipartResolver

    一. 简介 CommonsMultipartResolver是基于Apache的Commons FileUpload来实现文件上传功能的,主要作用是配置文件上传的一些属性. 二. 配置 1)依赖Apa ...

  7. Apache——SSL协议

    SSL 协议既用到了公钥加密技术又用到了对称加密技术,对称加密技术虽然比公钥加密技术的速度快,可是公钥加密技术提供了更好的身份认证技术.SSL 的握手协议非常有效的让客户和服务器之间完成相互之间的身份 ...

  8. ElasticSearch 2.0以后的改动导致旧的资料和书籍需要订正的部分

    id原先是可以通过path指定字段的 "thread": { "_id" : { "path" : "thread_id" ...

  9. 3.azkaban3.0测试

    测试目标 azkaban多executor下flow的分配方式 azkaban可以同时执行的flow\job个数 azkaban单个job最小使用的内存 相关配置 executor最大线程数: exe ...

  10. 深入理解Java之数据类型

    一.概述 我们通过编程解决一个具体问题时,首先要做的工作是用各种“数据结构”表示问题中的实体对象,而后才能着手研究描述具体业务逻辑的算法.这也正印证了”程序 = 数据结构 + 算法“.而这里的数据结构 ...