传送门:

http://acm.hdu.edu.cn/showproblem.php?pid=1207

汉诺塔II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9991    Accepted Submission(s): 4869

Problem Description
经典的汉诺塔问题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今仍在一刻不停地搬动着圆盘。恩,当然这个传说并不可信,如今汉诺塔更多的是作为一个玩具存在。Gardon就收到了一个汉诺塔玩具作为生日礼物。
  Gardon是个怕麻烦的人(恩,就是爱偷懒的人),很显然将64个圆盘逐一搬动直到所有的盘子都到达第三个柱子上很困难,所以Gardon决定作个小弊,他又找来了一根一模一样的柱子,通过这个柱子来更快的把所有的盘子移到第三个柱子上。下面的问题就是:当Gardon在一次游戏中使用了N个盘子时,他需要多少次移动才能把他们都移到第三个柱子上?很显然,在没有第四个柱子时,问题的解是2^N-1,但现在有了这个柱子的帮助,又该是多少呢?
 
Input
包含多组数据,每个数据一行,是盘子的数目N(1<=N<=64)。
 
Output
对于每组数据,输出一个数,到达目标需要的最少的移动数。
 
Sample Input
1
3
12
 
Sample Output
1
5
81
 
Author
Gardon
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  1996 1995 1997 2184 2511 
 
分析:
 
问题描述:在经典汉诺塔的基础上加一个条件,即,如果再加一根柱子(即现在有四根柱子a,b,c,d),计算将n个盘从第一根柱子(a)全部移到最后一根柱子(d)上所需的最少步数,当然,也不能够出现大的盘子放在小的盘子上面。注:1<=n<=64;
分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,我们将移完盘子的任务分为三步:
(1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱,这个过程需要的步数为F[x];
(2)将a柱上剩下的n-x个盘依靠b柱移到d柱(注:此时不能够依靠c柱,因为c柱上的所有盘都比a柱上的盘小)
         些时移动方式相当于是一个经典汉诺塔,即这个过程需要的步数为2^(n-x)-1(证明见再议汉诺塔一);
(3)将c柱上的x个盘依靠a,b柱移到d柱上,这个过程需要的步数为F[x];
第(3)步结束后任务完成。
故完成任务所需要的总的步数F[n]=F[x]+2^(n-x)-1+F[x]=2*F[x]+2^(n-x)-1;但这还没有达到要求,题目中要求的是求最少的步数,易知上式,随着x的不同取值,对于同一个n,也会得出不同的F[n]。即实际该问题的答案应该min{2*F[x]+2^(n-x)-1},其中1<=x<=n;在用高级语言实现该算法的过程中,我们可以用循环的方式,遍历x的各个取值,并用一个标记变量min记录x的各个取值中F[n]的最小值。
 
code:
#include<stdio.h>
#include<algorithm>
#include<memory.h>
#include<math.h>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
#define max_v 65
double qm(int n,int m)//快速幂
{
double s=,x=n;
while(m)
{
if(m&)
{
s*=x*1.0;
}
x*=x*1.0;
m>>=;
}
return s;
}
int main()
{
double f[max_v];
for(int i=;i<max_v;i++)f[i]=INF;
f[]=;
f[]=;
for(int i=;i<=max_v;i++)
{
for(int j=;j<i;j++)
{
f[i]=min(f[i],*f[j]+qm(,i-j)-);
}
}
int n;
while(~scanf("%d",&n))
{
printf("%d\n",(int)f[n]);
}
return ;
}

HDU 1207 汉诺塔II (找规律,递推)的更多相关文章

  1. hdu 1207 汉诺塔II (DP+递推)

    汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  2. HDU 1207 汉诺塔II (递推)

    经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上 ...

  3. HDU 1207 汉诺塔II (简单DP)

    题意:中文题. 析:在没有第四个柱子时,把 n 个盘子搬到第 3 个柱子时,那么2 ^ n -1次,由于多了一根,不知道搬到第四个柱子多少根时是最优的, 所以 dp[i] 表示搬到第4个柱子 i 个盘 ...

  4. HDU-1207 汉诺塔II

    汉诺塔  四根所需要的步数的规律: 规律:a[1]=1;a[2]=a[1]+2;a[3]=a[2]+2;(2个加2^1)a[4]=a[3]+4;a[5]=a[4]+4;a[6]=a[5]+4;(3个加 ...

  5. 汉诺塔系列问题: 汉诺塔II、汉诺塔III、汉诺塔IV、汉诺塔V、汉诺塔VI

    汉诺塔 汉诺塔II hdu1207: 先说汉若塔I(经典汉若塔问题),有三塔.A塔从小到大从上至下放有N个盘子.如今要搬到目标C上. 规则小的必需放在大的上面,每次搬一个.求最小步数. 这个问题简单, ...

  6. HDU 2064 汉诺塔III (递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2064 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到 ...

  7. HDU 2064 汉诺塔III

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. HDU 2064 汉诺塔III(递归)

    题目链接 Problem Description 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘 ...

  9. HDU——2064汉诺塔III

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

随机推荐

  1. influxdb 端口、数据结构、写数据

    InfluxDB 是一个开源,分布式,时间序列,事件,可度量和无外部依赖的数据库. InfluxDB有三大特性: Time Series (时间序列):你可以使用与时间有关的相关函数(如最大,最小,求 ...

  2. ccf-201609-3 炉石传说

    问题描述 <炉石传说:魔兽英雄传>(Hearthstone: Heroes of Warcraft,简称炉石传说)是暴雪娱乐开发的一款集换式卡牌游戏(如下图所示).游戏在一个战斗棋盘上进行 ...

  3. 如何让div覆盖canvas元素

    第一步 请让该div和canvas同样处于同一画布,都用position:absolute; 然后设置canvas的z-index="-1",是的,你没看错 然后把要覆盖canva ...

  4. Java设计模式—原型模式

    原型设计模式是一种比较简单的设计模式,在项目中使用的场景非常多. 个人理解: 原型模式实现了对Java中某个对象的克隆功能,即该对象的类必须implements实现Cloneable接口来标识为可被克 ...

  5. Perl学习笔记(2)----正则表达式数字匹配的一个疏忽

    <Perl语言入门>第15章习题第2题如下: 用 given-when 结构写一个程序,根据输入的数字,如果它能被3整除,就打印“Fizz”:如果它能被5整除,就打印“Bin”:如果它能被 ...

  6. 购物车动画(Android)

    购物车动画(Android) 前言:当我们写商城类的项目的时候,一般都会有加入购物车的功能,加入购物车的时候会有一些抛物线动画,最近做到这个功能,借助别人的demo写了一个. 效果: 开发环境:And ...

  7. qt 样式表基本用法

    Qt样式表 QT样式表参考CSS层叠样式表设计,不同之处在于QT样式表应用于Widget世界. 可以使用QApplication::setStyleSheet()函数设置到整个应用程序上,也可以使用Q ...

  8. 分分钟搞懂 HD 钱包

    转自:http://blog.sina.com.cn/s/blog_12ce70a430102v8c7.html 第一次看到 HD 这个词被用在比特币钱包中时,很容易就把它理解成硬件(Hardware ...

  9. 如何有效防止API的重放攻击(转自阿里云)

    API重放攻击(Replay Attacks)又称重播攻击.回放攻击,这种攻击会不断恶意或欺诈性地重复一个有效的API请求.攻击者利用网络监听或者其他方式盗取API请求,进行一定的处理后,再把它重新发 ...

  10. java音频播放器

    java音频播放器备份,支持wav,mp3 都是摘抄于网络,wav播放,mp3播放 播放wav版本 包: 不需要其他jar包 代码: package com; import javax.sound.s ...