Description

Too worrying about the house price bubble, poor Mike sold his house and rent an apartment in a 50-floor building several months ago. This building has only one elevator because it is a so called “rotten tail building”. There are always a lot of people crowding at the gate of the elevator on every floor. Many people have to climb hundreds of steps in order to save time. 
After months of climbing, Mike feels that he can’t stand it any more. He wants to sue the building owner. In order to let the judge understand how terrible the situation is, he decides to write a program to simulate the running of the elevator in a day. You’d better let him copy one from you . 
At first, the elevator is at the status of “idle”. If the three conditions below are all satisfied at the same time, we say the elevator is at “idle” status:  1)  The elevator is stopped.  2)  Nobody outside is waiting for the elevator.  3)  There is nobody in the elevator or all people in the elevator are just on their destination floor. 
There are an up button and a down button at the elevator gate on every floor except that only up button on the first floor, and only down button on the 50th floor. When someone wants to take the elevator, he pushes a button according to the direction he wants to go, and then wait. If the elevator is not moving towards his destination floor, he will not get in even the elevator comes and opens its door. When someone pushes a button, we say that he send a request to the elevator. 
When the elevator is idle and then some requests are sent to it, it will move towards the direction from which the first request is sent. If more than one request is sent at the same time, the requests sent form the same floor where the elevator stays have higher priority. In other cases, requests which will make the elevator go up, have higher priority than the same time requests which will make the elevator go down. 
Once the elevator starts moving, it keeps its moving direction until the three conditions below are all satisfied at the same time:  1)  All the people in the elevator have reached their destination floor.  2)  There is nobody waiting for the elevator at the elevator’s moving direction.  3)  Nobody on the floor where the elevator stays wants to go towards the elevator’s moving direction.  When the three conditions above are all satisfied at the same time, if there are requests from the direction opposite to the elevator’s last moving direction, the elevator will turn around and start moving; and if there are no requests at that time, the elevator will stay there and become idle. 
When the elevator reaches a certain floor, it will stop and open its door when one of the two conditions below is satisfied:  1) Someone inside the elevator wants to get off on that floor.  2) Someone on that floor wants to go towards the elevator’s moving direction. 
It takes one second for the elevator to move from one floor to another.  It takes one second for the elevator to open the door or close the door.  It takes one second for people outside the elevator to get in, no mater how many people.  It takes one second for people inside the elevator go get out, no mater how many people. 
The elevator can’t stop between two floors. 
 

Input

The first line is an integer T indicating the number of test cases. ( T <= 20) 
For each test case: 
The first line contains two integers: i and n. The elevator is on the i-th floor at first, and n is the total number of requests. ( 1 <= i <= 50, 1<=n<=100)  Then n lines follow. Each line contains three integers: t, s and d. It means that at the time of t-th second, a person on the s-th floor sends a request, and he wants to go to the d-th floor. 
 

Output

For each test case, print “Case N:” in a line at first. N is the test case number starting from 1.  Then, print the details of how the elevator runs. You should print information like:

mm:ss The elevator starts to move (up|down) from floor x.  mm:ss The elevator stops at floor x.  mm:ss The elevator door is opening.  mm:ss x people leave the elevator.  mm:ss x people enter the elevator.  mm:ss The elevator door is closing. 
"mm:ss" means time, "mm" for minute, "ss" for second .  Please append a blank line to the end of the output of each test case.  It is guaranteed that the elevator will finish all requests within 3600 seconds。

题目大意:模拟一台电梯的运作,细节不多说了。要注意的是:如果电梯在闲置状态,电梯所在层同时有人上有人下,就优先上,这个题目说得不太好(还是我英语问题呢……);电梯会一直走同一个方向直到没有人须要电梯往那个方向走了;至于POJ的DISCUSS里面有人说有进出是同一层的情况,我测试了一下(if(from == to) tle();),是没有这种情况的……

思路:丧心病狂模拟题,打错一个字母就没有然后了(还好我是复制的)。每次时间+1都判断一下有没有新的人来坐电梯,慢慢搞总会AC的……

PS:本人第一条200+行的题(大概是)。做了几个小时,现场肯定不能做了,可能我做法有点挫就不写做法误导大家了(捂脸)。

代码(HDU 0MS/POJ 16MS):

 #include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std; const int MAXN = ;
const int MAXT = ; struct Node {
int t, from, to;
void read() {
scanf("%d%d%d", &t, &from, &to);
}
bool operator < (const Node &rhs) const {
return t < rhs.t;
}
}; Node a[MAXN];
int leave[MAXN], sum_leave;//要在第几层离开
int into[MAXN][], sum_into;//要在第几层进来,0:down,1:up
bool have_in[MAXN];//已进入电梯
int T, n, rec_t, rec_a, rec_f, step, state; void inc_time() {
++rec_t;
while(rec_a < n && a[rec_a].t <= rec_t) {//更新请求
if(a[rec_a].from > a[rec_a].to) {
++into[a[rec_a].from][];
}
else {
++into[a[rec_a].from][];
}
++sum_into;
++rec_a;
}
} void solve() {
sort(a, a + n);
step = ;
sum_leave = sum_into = ;
rec_a = ;
rec_t = -; inc_time();
memset(have_in, , sizeof(have_in));
while(rec_a < n || sum_into || sum_leave) {
switch(step) {
case : { //空闲
if(sum_into == ) {
inc_time();
continue;
}
if(into[rec_f][]) {
step = ;//开门
state = ;//向上
continue;
}
if(into[rec_f][]) {
step = ;//开门
state = ;//向下
continue;
}
for(int i = rec_f + ; i <= ; ++i)
if(into[i][] || into[i][]) {//上面有请求
step = ;//向上
state = ;
break;
}
if(step == ) {
printf("%02d:%02d The elevator starts to move up from floor %d.\n", rec_t / , rec_t %, rec_f);
continue;
}
for(int i = ; i < rec_f; ++i)
if(into[i][] || into[i][]) {//下面有请求
step = ;//向下
state = ;
break;
}
if(step == ) {
printf("%02d:%02d The elevator starts to move down from floor %d.\n", rec_t / , rec_t %, rec_f);
continue;
}
break;
}
case : {//开门
printf("%02d:%02d The elevator door is opening.\n", rec_t / , rec_t %);
inc_time();
step = ;//离开
break;
}
case : {//关门
printf("%02d:%02d The elevator door is closing.\n", rec_t / , rec_t %);
inc_time();
if(into[rec_f][state]) {//有人要进来
step = ;
continue;
}
step = ;
break;
}
case : {//向上
++rec_f;
inc_time();
if(into[rec_f][] || leave[rec_f]) {
printf("%02d:%02d The elevator stops at floor %d.\n", rec_t / , rec_t %, rec_f);
step = ;
continue;
}
if(sum_leave) continue;
bool flag = true;
for(int i = rec_f + ; i <= ; ++i) {
if(into[i][] || into[i][]) {
flag = false;
break;
}
}
if(flag) {
printf("%02d:%02d The elevator stops at floor %d.\n", rec_t / , rec_t %, rec_f);
state = , step = ;
}
break;
}
case : {//向下
--rec_f;
inc_time();
if(into[rec_f][] || leave[rec_f]) {
printf("%02d:%02d The elevator stops at floor %d.\n", rec_t / , rec_t %, rec_f);
step = ;
continue;
}
if(sum_leave) continue;
bool flag = true;
for(int i = ; i < rec_f; ++i) {
if(into[i][] || into[i][]) {
flag = false;
break;
}
}
if(flag) {
printf("%02d:%02d The elevator stops at floor %d.\n", rec_t / , rec_t %, rec_f);
state = , step = ;
}
break;
}
case : {//进入
if(into[rec_f][state]) {
printf("%02d:%02d %d people enter the elevator.\n", rec_t / , rec_t %, into[rec_f][state]);
sum_into -= into[rec_f][state];
into[rec_f][state] = ;
for(int i = ; i < rec_a; ++i)
if(a[i].from == rec_f && state == (a[i].from < a[i].to) && !have_in[i]) {
have_in[i] = true;
++leave[a[i].to];
++sum_leave;
//in_ele[i] = true;
}
inc_time();
}
if(!into[rec_f][state]) step = ;//有人要进来就不关门
break;
}
case : {//离开
if(leave[rec_f]) {
printf("%02d:%02d %d people leave the elevator.\n", rec_t / , rec_t %, leave[rec_f]);
sum_leave -= leave[rec_f];
leave[rec_f] = ;
inc_time();
}
if(sum_leave == && state == ) {
bool flag = true;
for(int i = ; i < rec_a; ++i) {
if(!have_in[i] && a[i].from == rec_f && a[i].to > rec_f) {
flag = false;
break;
}
if(!have_in[i] && a[i].from > rec_f) {
flag = false;
break;
}
}
if(flag) state = ;
}
else if(sum_leave == && state == ) {
bool flag = true;
for(int i = ; i < rec_a; ++i) {
if(!have_in[i] && a[i].from == rec_f && a[i].to < rec_f) {
flag = false;
break;
}
if(!have_in[i] && a[i].from < rec_f) {
flag = false;
break;
}
}
if(flag) state = ;
}
step = ;
break;
}
case : {//判断关门后动作
if(sum_into == && sum_leave == ) {//没人要进来没人在电梯里
step = ;
continue;
}
if(sum_leave == ) {//本层没人上,电梯没人,有请求
if(state == ) {//是否继续向上
int i;
for(i = rec_f + ; i <= ; ++i) {
if(into[i][] || into[i][]) break;
}
if(i > ) state = ;
}
else {//是否继续向下
int i;
for(i = ; i < rec_f; ++i) {
if(into[i][] || into[i][]) break;
}
if(i == rec_f) state = ;
}
}
if(state) printf("%02d:%02d The elevator starts to move up from floor %d.\n", rec_t / , rec_t %, rec_f);
else printf("%02d:%02d The elevator starts to move down from floor %d.\n", rec_t / , rec_t %, rec_f);
if(state) step = ;
else step = ;
break;
}
}
}
printf("%02d:%02d The elevator door is closing.\n", rec_t / , rec_t %);
} int main() {
scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &rec_f, &n);
for(int i = ; i < n; ++i) a[i].read();
printf("Case %d:\n", t);
solve();
puts("");
}
}

HDU 2494/POJ 3930 Elevator(模拟)(2008 Asia Regional Beijing)的更多相关文章

  1. HDU 2490 Parade(DPの单调队列)(2008 Asia Regional Beijing)

    Description Panagola, The Lord of city F likes to parade very much. He always inspects his city in h ...

  2. HDU 2492 Ping pong(数学+树状数组)(2008 Asia Regional Beijing)

    Description N(3<=N<=20000) ping pong players live along a west-east street(consider the street ...

  3. HDU 2491 Priest John's Busiest Day(贪心)(2008 Asia Regional Beijing)

    Description John is the only priest in his town. October 26th is the John's busiest day in a year be ...

  4. HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)

    Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...

  5. HDU 2487 Ugly Windows(暴力)(2008 Asia Regional Beijing)

    Description Sheryl works for a software company in the country of Brada. Her job is to develop a Win ...

  6. hdu 5016 点分治(2014 ACM/ICPC Asia Regional Xi'an Online)

    Mart Master II Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  7. 【贪心】【模拟】HDU 5491 The Next (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5491 题目大意: 一个数D(0<=D<231),求比D大的第一个满足:二进制下1个个数在 ...

  8. hdu 2473 Junk-Mail Filter(并查集_虚节点)2008 Asia Regional Hangzhou

    感觉有些难的题,刚开始就想到了设立虚节点,但是实现总是出错,因为每次设立了虚节点之后,无法将原节点和虚节点分开,导致虚节点根本无意义. 以上纯属废话,可以忽略…… 题意—— 给定n个点(0, 1, 2 ...

  9. Hdu OJ 5884-Sort (2016 ACM/ICPC Asia Regional Qingdao Online)(二分+优化哈夫曼)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5884 题目大意:有n个有序的序列,对于第i个序列有ai个元素. 现在有一个程序每次能够归并k个序列, ...

随机推荐

  1. LeetCode 中级 - 组合总和II(105)

    给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在每个组合中只能使用一次. ...

  2. LeetCode 中级 - 优势洗牌(870)

    给定两个大小相等的数组 A 和 B,A 相对于 B 的优势可以用满足 A[i] > B[i] 的索引 i 的数目来描述. 返回 A 的任意排列,使其相对于 B 的优势最大化. 示例 2: 输入: ...

  3. BZOJ 3771: Triple(生成函数 FFT)

    Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 911  Solved: 528[Submit][Status][Discuss] Description ...

  4. Java开发小技巧(五):HttpClient工具类

    前言 大多数Java应用程序都会通过HTTP协议来调用接口访问各种网络资源,JDK也提供了相应的HTTP工具包,但是使用起来不够方便灵活,所以我们可以利用Apache的HttpClient来封装一个具 ...

  5. Oracle-两表关联更新和插入

    需求: 表a(com_name,stock_code,com_sacle,mark,market_location,company_name) 表b(com_name,stock_code,com_s ...

  6. Python学习手册之捕获组和特殊匹配字符串

    在上一篇文章中,我们介绍了 Python 的字符类和对元字符进行了深入讲解,现在我们介绍 Python 的捕获组和特殊匹配字符串.查看上一篇文章请点击:https://www.cnblogs.com/ ...

  7. go基础语法-内置变量类型

    1.内建变量一览 bool,string (u)int,(u)int8,(u)int16,(u)int32,(u)int64,uintptr 无长度int的实际长度取决于操作系统位数(32/64) u ...

  8. centos下安装python的过程

    Linux下默认系统自带python2.6的版本,这个版本被系统很多程序所依赖,所以不建议删除,如果使用最新的Python3那么我们知道编译安装源码包和系统默认包之间是没有任何影响的,所以可以安装py ...

  9. auto、static、extern

  10. CodingLabs - MySQL索引背后的数据结构及算法原理

    原文:CodingLabs - MySQL索引背后的数据结构及算法原理 首页 | 标签 | 关于我 | +订阅 | 微博 MySQL索引背后的数据结构及算法原理 作者 张洋 | 发布于 2011-10 ...