ACM 第九天
动态规划1
动态规划问题是面试题中的热门话题,如果要求一个问题的最优解(通常是最大值或者最小值),而且该问题能够分解成若干个子问题,并且小问题之间也存在重叠的子问题,则考虑采用动态规划。
1、LLS 最长上升子序列
2、最大子段和
3、背包
01背包
完全背包
多重背包
混合背包
分组背包
多维背包
输出方案
输出方案种数
最优方案种数
第k优数
A - Tickets
A good approach, reducing the total time of tickets selling, is let
adjacent people buy tickets together. As the restriction of the Ticket
Seller Machine, Joe can sell a single ticket or two adjacent tickets at a
time.
Since you are the great JESUS, you know exactly how much time
needed for every person to buy a single ticket or two tickets for
him/her. Could you so kind to tell poor Joe at what time could he go
back home as early as possible? If so, I guess Joe would full of
appreciation for your help.
1) An integer K(1<=K<=2000) representing the total number of people;
2) K integer numbers(0s<=Si<=25s) representing the time consumed to buy a ticket for each person;
3) (K-1) integer numbers(0s<=Di<=50s) representing the time needed for two adjacent people to buy two tickets together.
OutputFor every scenario, please tell Joe at what time could he go
back home as early as possible. Every day Joe started his work at
08:00:00 am. The format of time is HH:MM:SS am|pm.
Sample Input
2
2
20 25
40
1
8
Sample Output
08:00:40 am
08:00:08 am
#include<cstring>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<queue>
#include<cmath>
#include<stdio.h>
using namespace std;
int main()
{
int n,k;
int s[];
int d[]; int dp[];
scanf("%d",&n);
while(n--)
{
scanf("%d",&k);
for(int i=;i<=k;i++)
{
scanf("%d",&s[i]);
}
for(int i=;i<=k;i++)
{
scanf("%d",&d[i]);
}
dp[] = ;dp[] = s[];
for(int i=;i<=k;i++)
{
dp[i]=min((dp[i-]+s[i]),(dp[i-]+d[i]));
}
int h=dp[k]/+;
int m=dp[k]/%;
int s1=dp[k]%; printf("%02d:%02d:%02d am\n", h, m, s1);
}
return ;
}
B - Longest Ordered Subsequence
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The second line contains the elements of sequence - N integers in the
range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
#include<stdio.h>
#include<math.h>
#include<string.h>
using namespace std;
int main()
{
int n;
int a[];
scanf("%d",&n);
int dp[];
int i;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
dp[]=dp[]=;
for(int i=;i<=n;i++)
{
int temp=;
for(int j=;j<=i-;j++)
{
if(a[j]<a[i])
{
if(temp<dp[j])
temp=dp[j];
}
}
dp[i]=temp+;
}
int sum1=dp[];
for(int i=;i<n;i++)
{
if(dp[i+]>sum1)
sum1=dp[i+];
}
printf("%d\n",sum1);
return ;
}
BaoBao has just found a string of length consisting of 'C' and 'P' in his pocket. As a big fan of the China Collegiate Programming Contest, BaoBao thinks a substring of is "good", if and only if 'C', and 'P', where denotes the -th character in string . The value of is the number of different "good" substrings in . Two "good" substrings and are different, if and only if .
To make this string more valuable, BaoBao decides to buy some characters from a character store. Each time he can buy one 'C' or one 'P' from the store, and insert the character into any position in . But everything comes with a cost. If it's the -th time for BaoBao to buy a character, he will have to spend units of value.
The final value BaoBao obtains is the final value of minus the total cost of all the characters bought from the store. Please help BaoBao maximize the final value.
There are multiple test cases. The first line of the input contains an integer , indicating the number of test cases. For each test case:
The first line contains an integer (), indicating the length of string .
The second line contains the string () consisting of 'C' and 'P'.
It's guaranteed that the sum of over all test cases will not exceed .
Output
For each test case output one line containing one integer, indicating the maximum final value BaoBao can obtain.
Sample Input
3
3
CCC
5
CCCCP
4
CPCP
Sample Output
1
1
1
Hint
For the first sample test case, BaoBao can buy one 'P' (cost 0 value) and change to "CCPC". So the final value is 1 - 0 = 1.
For the second sample test case, BaoBao can buy one 'C' and one 'P' (cost 0 + 1 = 1 value) and change to "CCPCCPC". So the final value is 2 - 1 = 1.
For the third sample test case, BaoBao can buy one 'C' (cost 0 value) and change to "CCPCP". So the final value is 1 - 0 = 1.
It's easy to prove that no strategies of buying and inserting characters can achieve a better result for the sample test cases.
#include<stdio.h>
#include <iostream>
#include <string.h>
using namespace std; string s; int main()
{
int t,n; cin>>t;
while(t--)
{
cin>>n>>s;
int ans=;
for(int i=; i<s.size(); i++)
{
if(s[i]=='C' && s[i+]=='C' && s[i+]=='P' && s[i+]=='C')
{
ans++;
}
}
for(int i=; i<s.size(); i++)
{
if(s[i]=='C' && s[i+]=='C'&&s[i+]=='C' && s[i+]=='P' && s[i+]=='C')
{
i+=;
continue;
}
if(s[i]=='C' && s[i+]=='C'&&s[i+]=='P'&&s[i+]=='C' )
{
i+=;
continue;
} if(s[i]=='C' && s[i+]=='C' && s[i+]=='C')
{ ans++;
break;
}
if(s[i]=='C' && s[i+]=='P' && s[i+]=='C')
{ ans++;
break;
}
if(s[i]=='C' && s[i+]=='C' && s[i+]=='P')
{ ans++;
break;
}
}
cout<<ans<<endl;
}
return ;
}
You are given a string s consisting only of characters 0 and 1. A substring [l, r] of s is a string slsl + 1sl + 2... sr, and its length equals to r - l + 1. A substring is called balanced if the number of zeroes (0) equals to the number of ones in this substring.
You have to determine the length of the longest balanced substring of s.
The first line contains n (1 ≤ n ≤ 100000) — the number of characters in s.
The second line contains a string s consisting of exactly n characters. Only characters 0 and 1 can appear in s.
Output
If there is no non-empty balanced substring in s, print 0. Otherwise, print the length of the longest balanced substring.
Examples
8
11010111
4
3
111
0
Note
In the first example you can choose the substring [3, 6]. It is balanced, and its length is 4. Choosing the substring [2, 5] is also possible.
In the second example it's impossible to find a non-empty balanced substring.
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <map>
#define maxn 100005
using namespace std;
//最长子序列问题,求最长子序列为0时最长序列
int main()
{
int n,ans=,sum=;
string s;
int a[maxn];
map<int,int> mp;
cin>>n>>s; for(int i=; i<n; i++)
{
if(s[i]=='')
{
a[i+]=-;
}
else if(s[i]=='')
{
a[i+]=;
}
}
for(int i=; i<=n; i++)
{
sum+=a[i];
if(mp[sum])
{
ans=max(ans,i-mp[sum]);////如果之前存在过这个和,现在又出现了,说明这个区间1,0个数是相同的,相减为长度
}
else mp[sum]=i;
if(sum==)
ans=max(ans,i);
}
cout<<ans<<endl;
return ;
}
ACM 第九天的更多相关文章
- ACM 第十九天
积性函数 积性函数线性筛,筛素数,u(n),欧拉函数: vis[]=vis[]=,mu[]=,phi[]=; ;i<=N;++i){ ,phi[i]=i-,prime[++cnt]=i; ,k= ...
- SCNU ACM 2016新生赛决赛 解题报告
新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...
- SCNU ACM 2016新生赛初赛 解题报告
新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...
- acm结束了
最后一场比赛打完了.之前为了记录一些题目,开了这个博客,现在结束了acm,这个博客之后也不再更新了. 大家继续加油!
- 关于ACM的总结
看了不少大神的退役帖,今天终于要本弱装一波逼祭奠一下我关于ACM的回忆. 从大二上开始接触到大三下结束,接近两年的时间,对于大神们来说两年的确算不上时间,然而对于本弱来说就是大学的一半时光.大一的懵懂 ...
- 第一届山东省ACM——Phone Number(java)
Description We know that if a phone number A is another phone number B’s prefix, B is not able to be ...
- 第一届山东省ACM——Balloons(java)
Description Both Saya and Kudo like balloons. One day, they heard that in the central park, there wi ...
- ACM之鸡血篇
一匹黑马的诞生 故事还要从南京现场赛讲起,话说这次现场赛,各路ACM英雄豪杰齐聚南京,为争取亚洲总舵南京分舵舵主之职位,都使出了看 家本领,其中有最有实力的有京城两大帮清华帮,北大帮,南郡三大派上交派 ...
- 【codeforces 415D】Mashmokh and ACM(普通dp)
[codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...
随机推荐
- flask第三方插件DBUtils
django中有强大的ORM支持我们来操作数据库, 但是flask没有提供对数据库的操作, 依然还是需要第三方的支持, 来提高我们的开发效率. 下载DBUtils 使用DBUtils 使用DBUtil ...
- ActivatedRoute 当前激活的路由对象
ActivatedRoute,当前激活的路由对象,主要用于保存路由,获取路由传递的参数. 一:传递参数的三种方式,以及ActivatedRoute获取他们的方式: 1.在查询参数中传递数据: /pro ...
- Julia 1.0 中文文档
欢迎来到Julia 1.0的文档. 请阅读发布博客文章,了解该语言的一般概述以及自Julia v0.6以来的许多更改.请注意,0.7版本与1.0一起发布,以提供1.0版本之前的软件包和代码的升级路径. ...
- Spring quantz--定时任务调度工具
1.在xml中交给spring管理的一些类 <bean id="cancelOrderJobDetail" class="org.springframework.s ...
- SQL盲注
一.首先输入1和-1 查看输入正确和不正确两种情况 二.三种注入POC LOW等级 ... where user_id =$id 输入 真 and 假 = 假 (1)...where u ...
- IPV6路由技术
OSPFV3 一.OSPFv3概述:协议号89 1.概念: OSPFv3是ospf(开放式最短路径优先)版本3的简称,主要提供对IPV6的支持,遵循的标准为RFC2740(OSPF for IPv6) ...
- Linux getcwd()的实现
通过getcwd()可以获取当前工作目录. #include <unistd.h> char *getcwd(char *cwdbuf, size_t size); 成功调用返回指向cwd ...
- 20145207 ms11_050漏洞攻击
实验过程 查看两台主机ip,并ping通 启动msf,进入该漏洞模块,查看漏洞的信息 exploit生成网站地址,开启服务
- 20145234黄斐《Java程序设计》第七周学习总结(课本部分)
教材知识概述 存储器系统是一个具有不同容量.成本和访问时间的存储设备的层次结构. 6.1 存储技术 1.随机访问存储器(RAM)分为两类:静态的(SRAM)比动态的(DRAM)快,但也贵得多 静态RA ...
- 初识Tarjan
Tarjan,一个十分有用的东西,可以求有向图的强连通分量,复杂度达到O(V+E). Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的节 ...