Pandas稀疏数据
当任何匹配特定值的数据(NaN/缺失值,尽管可以选择任何值)被省略时,稀疏对象被“压缩”。 一个特殊的SparseIndex对象跟踪数据被“稀疏”的地方。 这将在一个例子中更有意义。 所有的标准Pandas数据结构都应用了to_sparse
方法 -
import pandas as pd
import numpy as np
ts = pd.Series(np.random.randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
print (sts)
执行上面示例代码,得到以下结果 -
0 -0.391926
1 -1.774880
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 0.642988
9 -0.373698
dtype: float64
BlockIndex
Block locations: array([0, 8])
Block lengths: array([2, 2])
为了内存效率的原因,所以需要稀疏对象的存在。
现在假设有一个大的NA DataFrame并执行下面的代码 -
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10000, 4))
df.ix[:9998] = np.nan
sdf = df.to_sparse()
print (sdf.density)
执行上面示例代码,得到以下结果 -
0.0001
通过调用to_dense
可以将任何稀疏对象转换回标准密集形式 -
import pandas as pd
import numpy as np
ts = pd.Series(np.random.randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
print (sts.to_dense())
执行上面示例代码,得到以下结果 -
0 -0.275846
1 1.172722
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.612009
9 -1.413996
dtype: float64
稀疏Dtypes
稀疏数据应该具有与其密集表示相同的dtype。 目前,支持float64
,int64
和booldtypes
。 取决于原始的dtype
,fill_value
默认值的更改 -
float64
−np.nan
int64
−0
bool
−False
执行下面的代码来理解相同的内容 -
import pandas as pd
import numpy as np
s = pd.Series([1, np.nan, np.nan])
print (s)
print ("=============================")
s.to_sparse()
print (s)
执行上面示例代码,得到以下结果 -
0 1.0
1 NaN
2 NaN
dtype: float64
=============================
0 1.0
1 NaN
2 NaN
dtype: float64
Pandas稀疏数据的更多相关文章
- Pandas教程目录
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- Pandas | 26 疏离数据
当任何匹配特定值的数据(NaN/缺失值,尽管可以选择任何值)被省略时,稀疏对象被“压缩”. 一个特殊的SparseIndex对象跟踪数据被“稀疏”的地方. 这将在一个例子中更有意义. 所有的标准Pan ...
- 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化
1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...
- pandas基础-Python3
未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...
- 10 Minutes to pandas
摘要 一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型 十.画图 十一 ...
- 利用Python进行数据分析(15) pandas基础: 字符串操作
字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
随机推荐
- 170228、Linux操作系统安装ELK stack日志管理系统--(1)Logstash和Filebeat的安装与使用
安装测试环境:Ubuntu 16.04.2 LTS 前言 (1)ELK是Elasticsearch,Logstash,Kibana 开源软件的集合,对外是作为一个日志管理系统的开源方案.它可以从任何来 ...
- C#中遍历ArrayList的三种方法
using System; using System.Collections; using System.Linq; using System.Text; namespace ArrayListDem ...
- FineReport----日期处理
日期处理:http://help.finereport.com/doc-view-819.html DAYSOFMONTH(date):返回当日的该月天数 DATEDELTA(Today(),-1): ...
- Spoken English Practice( Believe it or not, I don't need to make believe its a big deal. (believe,deal, You don't say))
音标复习 绿色:连读:红色:略读:蓝色:浊化:橙色:弱读 口语蜕变(2017/6/25) Sorry, t ...
- access variables from the global scope 在全局范围内访问变量的2种方法
w http://php.net/manual/zh/language.variables.scope.php http://php.net/manual/en/language.variables. ...
- https://www.cnblogs.com/yuanchenqi/articles/6755717.html
知识预览 一 进程与线程的概念 二 threading模块 三 multiprocessing模块 四 协程 五 IO模型 回到顶部 一 进程与线程的概念 1.1 进程 考虑一个场景:浏览器,网易云音 ...
- Using Swift with Cocoa and Objective-C--在同个project中使用Swift和在同个project中
http://www.cocoachina.com/newbie/basic/2014/0605/8688.html watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5u ...
- TouchDelegate
TouchDelegate(Rect bounds, View delegateView) Parameters: bounds Bounds in local coordinates of the ...
- tornado下使用静态文件和文件缓存
静态文件和文件缓存 1.在应用配置 settings 中指定 static_path 选项来提供静态文件服务: 2.在应用配置 settings 中指定 static_url_prefix 选项来 ...
- laravel command命令行
生成类 为了创建一个新命令,你可以使用Artisan中的 command:make 命令生成一个骨架作为你的起点: 生成一个命令类 php artisan command:make FooComman ...