Pandas稀疏数据
当任何匹配特定值的数据(NaN/缺失值,尽管可以选择任何值)被省略时,稀疏对象被“压缩”。 一个特殊的SparseIndex对象跟踪数据被“稀疏”的地方。 这将在一个例子中更有意义。 所有的标准Pandas数据结构都应用了to_sparse
方法 -
import pandas as pd
import numpy as np
ts = pd.Series(np.random.randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
print (sts)
执行上面示例代码,得到以下结果 -
0 -0.391926
1 -1.774880
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 0.642988
9 -0.373698
dtype: float64
BlockIndex
Block locations: array([0, 8])
Block lengths: array([2, 2])
为了内存效率的原因,所以需要稀疏对象的存在。
现在假设有一个大的NA DataFrame并执行下面的代码 -
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10000, 4))
df.ix[:9998] = np.nan
sdf = df.to_sparse()
print (sdf.density)
执行上面示例代码,得到以下结果 -
0.0001
通过调用to_dense
可以将任何稀疏对象转换回标准密集形式 -
import pandas as pd
import numpy as np
ts = pd.Series(np.random.randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
print (sts.to_dense())
执行上面示例代码,得到以下结果 -
0 -0.275846
1 1.172722
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.612009
9 -1.413996
dtype: float64
稀疏Dtypes
稀疏数据应该具有与其密集表示相同的dtype。 目前,支持float64
,int64
和booldtypes
。 取决于原始的dtype
,fill_value
默认值的更改 -
float64
−np.nan
int64
−0
bool
−False
执行下面的代码来理解相同的内容 -
import pandas as pd
import numpy as np
s = pd.Series([1, np.nan, np.nan])
print (s)
print ("=============================")
s.to_sparse()
print (s)
执行上面示例代码,得到以下结果 -
0 1.0
1 NaN
2 NaN
dtype: float64
=============================
0 1.0
1 NaN
2 NaN
dtype: float64
Pandas稀疏数据的更多相关文章
- Pandas教程目录
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- Pandas | 26 疏离数据
当任何匹配特定值的数据(NaN/缺失值,尽管可以选择任何值)被省略时,稀疏对象被“压缩”. 一个特殊的SparseIndex对象跟踪数据被“稀疏”的地方. 这将在一个例子中更有意义. 所有的标准Pan ...
- 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化
1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...
- pandas基础-Python3
未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...
- 10 Minutes to pandas
摘要 一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型 十.画图 十一 ...
- 利用Python进行数据分析(15) pandas基础: 字符串操作
字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
随机推荐
- 在java中public void与public static void有什么区别 ?
public void 修饰是非静态方法,该类方法属于对象,在对象初始化(new Object())后才能被调用:public static void 修饰是静态方法,属于类,使用类名.方法名直接调用 ...
- CoordinatorLayout Behaviors使用说明[翻译]
翻译与:Intercepting everything with CoordinatorLayout Behaviors 使用过Android Design Support Library的小伙伴应该 ...
- 淘宝订单数据转CSV
<html> <body> <div id="result"> </div> <div> <textarea st ...
- JQuery设置checkbox选中或取消等相关操作
$("[name='checkbox']").attr("checked",'true');//全选 $("[name='checkbox']&quo ...
- XPath 快速入门
XPath 是一门在 xml 文档中查找信息的语言. XPath 使用路径表达式来选取 xml 文档中的节点或者节点集合. 路径表达式由元素和属性组成. 语法介绍 // 示例: // xml 文档 & ...
- Django - 权限(1)
一.权限表结构设计 1.认识权限 生活中处处有权限,比如,腾讯视频开会员才有观看某个最新电影的权限,你有房间钥匙就有了进入这个房间的权限,等等.同样,程序开发过程中也有权限,我们今天说的权限指的是we ...
- linux c编程:记录锁
记录锁相当于线程同步中读写锁的一种扩展类型,可以用来对有亲缘或无亲缘关系的进程进行文件读与写的同步,通过fcntl函数来执行上锁操作.尽管读写锁也可以通过在共享内存区来进行进程的同步,但是fcntl记 ...
- 吴超老师课程--Hive的执行语句
为什么选择Hive? (1)基于Hadoop的大数据的计算/扩展能力(2)支持SQL like查询语言(3)统一的元数据管理(4)简单编程 一:Hive的数据类型(1)基本数据类型tinyint/sm ...
- wtforms Form实例化流程(源码解析)
class LoginForm(Form): #首先执行后得到的结果是UnboundField()对象 name=simple.StringField( label='用户名', validato ...
- 微信小程序组件progress
基础内容progress:官方文档 Demo Code: Page({ data:{ percent:0 }, onReady:function(){ this.percentAdd(); }, pe ...