传送门

题意

给你一个 $ n*n $ 的正实数矩阵 $ A $ ,满足XWW性。

称一个 $ n*n $ 的矩阵满足XWW性当且仅当:

  • $ A[n][n] = 0 $
  • 矩阵中每行的最后一个元素等于该行前 $ n-1 $ 个数的和(除最后一行)
  • 矩阵中每列的最后一个元素等于该列前 $ n-1 $ 个数的和(除最后一列)

现在你要给 $ A $ 中的数进行取整操作(可以是上取整或者下取整),使得最后的 $ A $ 矩阵仍然满足XWW性。

问你 $ A $ 中元素之和最大为多少。如果无解,输出"No"。

题解

考虑将每一行和每一列看做一个点。

首先从源点向每一行 $ R(i) $ 连一条上下界分别为 $ (\lfloor A[i][n] \rfloor, \lceil A[i][n] \rceil) $ 的边,从每一列 $ C(i) $ 向汇点连一条上下界分别为 $ (\lfloor A[n][i] \rfloor, \lceil A[n][i] \rceil) $ 的边。

然后对于每一个 $ A[i][j] $ 来说,连一条从 $ R(i) $ 到 $ C(i) $ 的上下界为 $ (\lfloor A[i][j] \rfloor, \lceil A[i][j] \rceil) $ 边。

这样就保证了最大流一定满足了后两个条件。

然后跑有上下界的有源汇最大流就好。

AC Code

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <vector>
#include <queue>
#define MAX_N 205
#define INF 1000000000
#define r(x) (x)
#define c(x) (n-1+(x)) using namespace std; struct Edge
{
int dst,cap,rev;
Edge(int _dst,int _cap,int _rev) { dst=_dst,cap=_cap,rev=_rev; }
Edge(){}
}; int n,s,t,S,T,tot,dif=0;
int a[MAX_N];
int it[MAX_N];
int lv[MAX_N];
double w[MAX_N][MAX_N];
vector<Edge> edge[MAX_N];
queue<int> q; void read()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%lf",&w[i][j]);
}
}
} inline void add(int s,int t,int c)
{
edge[s].push_back(Edge(t,c,edge[t].size()));
edge[t].push_back(Edge(s,0,edge[s].size()-1));
} void build()
{
s=(n<<1)-1,t=s+1,S=t+1,T=S+1,tot=T;
for(int i=1;i<n;i++)
{
add(s,r(i),ceil(w[i][n])-floor(w[i][n]));
add(c(i),t,ceil(w[n][i])-floor(w[n][i]));
a[s]-=floor(w[i][n]),a[r(i)]+=floor(w[i][n]);
a[c(i)]-=floor(w[n][i]),a[t]+=floor(w[n][i]);
}
for(int i=1;i<n;i++)
{
for(int j=1;j<n;j++)
{
add(r(i),c(j),ceil(w[i][j])-floor(w[i][j]));
a[r(i)]-=floor(w[i][j]),a[c(j)]+=floor(w[i][j]);
}
}
add(t,s,INF);
for(int i=1;i<=(n<<1);i++)
{
if(a[i]>0) dif+=a[i],add(S,i,a[i]);
else if(a[i]<0) add(i,T,-a[i]);
}
} void bfs(int s)
{
memset(lv+1,0,sizeof(int)*tot);
q.push(s),lv[s]=1;
while(!q.empty())
{
int x=q.front(); q.pop();
for(int i=0;i<edge[x].size();i++)
{
Edge temp=edge[x][i];
if(temp.cap>0 && !lv[temp.dst])
{
lv[temp.dst]=lv[x]+1;
q.push(temp.dst);
}
}
}
} int dfs(int x,int t,int f)
{
if(x==t) return f;
for(int &i=it[x];i<edge[x].size();i++)
{
Edge &temp=edge[x][i];
if(temp.cap>0 && lv[x]<lv[temp.dst])
{
int d=dfs(temp.dst,t,min(f,temp.cap));
if(d>0)
{
temp.cap-=d;
edge[temp.dst][temp.rev].cap+=d;
return d;
}
}
}
return 0;
} int max_flow(int s,int t)
{
int ans=0,f;
while(true)
{
bfs(s);
if(!lv[t]) return ans;
memset(it+1,0,sizeof(int)*tot);
while((f=dfs(s,t,INF))>0) ans+=f;
}
} void work()
{
build();
int now=max_flow(S,T);
if(now!=dif)
{
printf("No\n");
return;
}
printf("%d\n",max_flow(s,t)*3);
} int main()
{
read();
work();
}

BZOJ 3698 XWW的难题:有上下界的最大流的更多相关文章

  1. 【BZOJ3698】XWW的难题 有上下界的最大流

    [BZOJ3698]XWW的难题 Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了 ...

  2. BZOJ 3698: XWW的难题 [有源汇上下界最大流]

    3698: XWW的难题 题意:(1)A[N][N]=0:(2)矩阵中每行的最后一个元素等于该行前N-1个数的和:(3)矩阵中每列的最后一个元素等于该列前N-1个数的和.给A中的数进行取整操作(可以是 ...

  3. 【bzoj3698】XWW的难题 有上下界最大流

    题目描述 XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A ...

  4. BZOJ 3698: XWW的难题(有源汇上下界最大流)

    题面 XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核. XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A, ...

  5. bzoj 3698 XWW的难题(有源汇的上下界最大流)

    [题意] 对每个格子确定上下取整,使得满足1.A[n][n]=0 2.每行列前n-1个之和为第n个 3.格子之和尽量大. [思路] 设格子(i,j)上下取整分别为up(i,j)down(i,j),构图 ...

  6. BZOJ.3698.XWW的难题(有源汇上下界最大流ISAP)

    题目链接 按套路行列作为两部分,连边 \(S->row->column->T\). S向代表行的元素连边cap(A[i][n])(容量上下界为上下取整),代表列的元素向T连边cap( ...

  7. BZOJ 3698: XWW的难题

    Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核. XWW给你出了这么一个难题:XWW给你一个N ...

  8. bzoj 2406 二分+有源有汇上下界网络流可行流判定

    弱爆了,典型的行列建模方式,居然想不到,题做少了,总结少了...... 二分答案mid s----------------------->i行-----------------------> ...

  9. 3698: XWW的难题[有源汇上下界最大流]

    3698: XWW的难题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 354  Solved: 178[Submit][Status][Discus ...

随机推荐

  1. django博客项目9

    ................

  2. (4.2)SQL Server 客户端连接的问题

    转自:http://blog.51cto.com/jimshu/1395199 经常遇到 SQL Server 客户端无法连接到SQL Server 实例(服务).现在将这类问题归纳如下: 一.SQL ...

  3. python web框架 Django的APP以及目录介绍 django 1.11版本

    如果有很多业务请求函数 应该放在app目录 很多业务放在主站上 当用户一点跳到分站 例如 一个项目叫运维平台  他的业务 有资产管理 私有云 监控 不同业务线 chouti项目 - chouti - ...

  4. Redis六(管道)

    管道 为什么使用管道? Redis是一个TCP服务器,支持请求/响应协议. 在Redis中,请求通过以下步骤完成: 客户端向服务器发送查询,并从套接字读取,通常以阻塞的方式,用于服务器响应. 服务器处 ...

  5. 安装vue-cli脚手架

    一.安装node.js 1.什么是node.js? Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node.js 使用了一个事件驱动.非阻塞式 I/O 的模 ...

  6. 微信小程序组件icon

    基础内容icon:官方文档 Demo Code Page({ data: { iconSize: [20, 30, 40, 50, 60, 70], iconColor: [ 'red', 'oran ...

  7. ORACLE 多表连接与子查询

    Oracle表连接 SQL/Oracle使用表连接从多个表中查询数据 语法格式: select 字段列表from table1,table2where table1.column1=table2.co ...

  8. 【转】解决Gradle报错找不到org.gradle.api.internal.project.ProjectInternal.getPluginManager()方法问题

    源地址:http://www.mamicode.com/info-detail-1178200.html 一.概述 因为本地的AndroidStudio很久没用了,所以想要研究下github上的某个代 ...

  9. LLServer--》对LevelDB的应用

    http://code.google.com/p/llserver/ 查看libs path的路径 LD_DEBUG=libs /usr/bin/llserver -h

  10. Eclipse+maven 导致Eclipse启动后Build workspaces卡死或者下载缓慢的问题

    参考文档: (1)Eclipse 一直不停 building workspace完美解决总结 (2)eclipse 一直building workspace 问题 解决办法: (1)第一步: 修改ec ...