传送门

题意

给你一个 $ n*n $ 的正实数矩阵 $ A $ ,满足XWW性。

称一个 $ n*n $ 的矩阵满足XWW性当且仅当:

  • $ A[n][n] = 0 $
  • 矩阵中每行的最后一个元素等于该行前 $ n-1 $ 个数的和(除最后一行)
  • 矩阵中每列的最后一个元素等于该列前 $ n-1 $ 个数的和(除最后一列)

现在你要给 $ A $ 中的数进行取整操作(可以是上取整或者下取整),使得最后的 $ A $ 矩阵仍然满足XWW性。

问你 $ A $ 中元素之和最大为多少。如果无解,输出"No"。

题解

考虑将每一行和每一列看做一个点。

首先从源点向每一行 $ R(i) $ 连一条上下界分别为 $ (\lfloor A[i][n] \rfloor, \lceil A[i][n] \rceil) $ 的边,从每一列 $ C(i) $ 向汇点连一条上下界分别为 $ (\lfloor A[n][i] \rfloor, \lceil A[n][i] \rceil) $ 的边。

然后对于每一个 $ A[i][j] $ 来说,连一条从 $ R(i) $ 到 $ C(i) $ 的上下界为 $ (\lfloor A[i][j] \rfloor, \lceil A[i][j] \rceil) $ 边。

这样就保证了最大流一定满足了后两个条件。

然后跑有上下界的有源汇最大流就好。

AC Code

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <vector>
#include <queue>
#define MAX_N 205
#define INF 1000000000
#define r(x) (x)
#define c(x) (n-1+(x)) using namespace std; struct Edge
{
int dst,cap,rev;
Edge(int _dst,int _cap,int _rev) { dst=_dst,cap=_cap,rev=_rev; }
Edge(){}
}; int n,s,t,S,T,tot,dif=0;
int a[MAX_N];
int it[MAX_N];
int lv[MAX_N];
double w[MAX_N][MAX_N];
vector<Edge> edge[MAX_N];
queue<int> q; void read()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%lf",&w[i][j]);
}
}
} inline void add(int s,int t,int c)
{
edge[s].push_back(Edge(t,c,edge[t].size()));
edge[t].push_back(Edge(s,0,edge[s].size()-1));
} void build()
{
s=(n<<1)-1,t=s+1,S=t+1,T=S+1,tot=T;
for(int i=1;i<n;i++)
{
add(s,r(i),ceil(w[i][n])-floor(w[i][n]));
add(c(i),t,ceil(w[n][i])-floor(w[n][i]));
a[s]-=floor(w[i][n]),a[r(i)]+=floor(w[i][n]);
a[c(i)]-=floor(w[n][i]),a[t]+=floor(w[n][i]);
}
for(int i=1;i<n;i++)
{
for(int j=1;j<n;j++)
{
add(r(i),c(j),ceil(w[i][j])-floor(w[i][j]));
a[r(i)]-=floor(w[i][j]),a[c(j)]+=floor(w[i][j]);
}
}
add(t,s,INF);
for(int i=1;i<=(n<<1);i++)
{
if(a[i]>0) dif+=a[i],add(S,i,a[i]);
else if(a[i]<0) add(i,T,-a[i]);
}
} void bfs(int s)
{
memset(lv+1,0,sizeof(int)*tot);
q.push(s),lv[s]=1;
while(!q.empty())
{
int x=q.front(); q.pop();
for(int i=0;i<edge[x].size();i++)
{
Edge temp=edge[x][i];
if(temp.cap>0 && !lv[temp.dst])
{
lv[temp.dst]=lv[x]+1;
q.push(temp.dst);
}
}
}
} int dfs(int x,int t,int f)
{
if(x==t) return f;
for(int &i=it[x];i<edge[x].size();i++)
{
Edge &temp=edge[x][i];
if(temp.cap>0 && lv[x]<lv[temp.dst])
{
int d=dfs(temp.dst,t,min(f,temp.cap));
if(d>0)
{
temp.cap-=d;
edge[temp.dst][temp.rev].cap+=d;
return d;
}
}
}
return 0;
} int max_flow(int s,int t)
{
int ans=0,f;
while(true)
{
bfs(s);
if(!lv[t]) return ans;
memset(it+1,0,sizeof(int)*tot);
while((f=dfs(s,t,INF))>0) ans+=f;
}
} void work()
{
build();
int now=max_flow(S,T);
if(now!=dif)
{
printf("No\n");
return;
}
printf("%d\n",max_flow(s,t)*3);
} int main()
{
read();
work();
}

BZOJ 3698 XWW的难题:有上下界的最大流的更多相关文章

  1. 【BZOJ3698】XWW的难题 有上下界的最大流

    [BZOJ3698]XWW的难题 Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了 ...

  2. BZOJ 3698: XWW的难题 [有源汇上下界最大流]

    3698: XWW的难题 题意:(1)A[N][N]=0:(2)矩阵中每行的最后一个元素等于该行前N-1个数的和:(3)矩阵中每列的最后一个元素等于该列前N-1个数的和.给A中的数进行取整操作(可以是 ...

  3. 【bzoj3698】XWW的难题 有上下界最大流

    题目描述 XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A ...

  4. BZOJ 3698: XWW的难题(有源汇上下界最大流)

    题面 XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核. XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A, ...

  5. bzoj 3698 XWW的难题(有源汇的上下界最大流)

    [题意] 对每个格子确定上下取整,使得满足1.A[n][n]=0 2.每行列前n-1个之和为第n个 3.格子之和尽量大. [思路] 设格子(i,j)上下取整分别为up(i,j)down(i,j),构图 ...

  6. BZOJ.3698.XWW的难题(有源汇上下界最大流ISAP)

    题目链接 按套路行列作为两部分,连边 \(S->row->column->T\). S向代表行的元素连边cap(A[i][n])(容量上下界为上下取整),代表列的元素向T连边cap( ...

  7. BZOJ 3698: XWW的难题

    Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核. XWW给你出了这么一个难题:XWW给你一个N ...

  8. bzoj 2406 二分+有源有汇上下界网络流可行流判定

    弱爆了,典型的行列建模方式,居然想不到,题做少了,总结少了...... 二分答案mid s----------------------->i行-----------------------> ...

  9. 3698: XWW的难题[有源汇上下界最大流]

    3698: XWW的难题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 354  Solved: 178[Submit][Status][Discus ...

随机推荐

  1. Replay attack 回放攻击

    w http://baike.baidu.com/item/重放攻击 重放攻击(Replay Attacks)又称重播攻击.回放攻击或新鲜性攻击(Freshness Attacks),是指攻击者发送一 ...

  2. ES6通过WeakMap解决内存泄漏问题

    一.Map 1.定义 Map对象保存键值对,类似于数据结构字典:与传统上的对象只能用字符串当键不同,Map对象可以使用任意值当键. 2.语法 new Map([iterable]) 属性 size:返 ...

  3. Java 之 Servlet

    JavaWeb 三大组件: Servlet, Filter, Listener. Servlet 的作用是处理请求,服务器会把接收到的请求交给 Servlet 来处理.在 Servlet 中通常需要: ...

  4. Java创建Timestamp的几种方式

    1.java创建Timestamp的几种方式 Timestamp time1 = new Timestamp(System.currentTimeMillis()); Timestamp time2 ...

  5. Linux网络调试工具资料链接

    Dropbox: https://huoding.com/2016/12/15/574 Tcpdump: http://roclinux.cn/?p=2474

  6. Redis、MongoDB及Memcached的区别 Redis(内存数据库)

    Redis.MongoDB及Memcached的区别 Redis(内存数据库) 是一个key-value存储系统(布式内缓存,高性能的key-value数据库).和Memcached类似,它支持存储的 ...

  7. ATA接口寄存器描写叙述

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/mao0514/article/details/32135815 ATA接口寄存器描写叙述   .AT ...

  8. java 多线程 day06 threadLocal

    import java.util.HashMap;import java.util.Map;import java.util.Random; /** * Created by chengtao on ...

  9. mysql 关于join的总结

    本文地址:http://www.cnblogs.com/qiaoyihang/p/6401280.html mysql不支持Full join,不过可以通过UNION 关键字来合并 LEFT JOIN ...

  10. 简明python教程七----面向对象的编程

    根据操作数据的函数或语句块来设计程序的,被称为面向过程的编程. 把数据和功能结合起来,用称为对象的东西包裹起来的组织程序的方法,称为面向对象的编程理念. 类和对象是面向对象编程的两个主要方面.类创建一 ...