【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛 树形dp
题目描述
经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统,里面有N-1条路,每条路连接了一对编号为C1和C2的奶牛(1 <= C1 <= N; 1 <= C2 <= N; C1<>C2).这样,在每一对奶牛之间都有一条唯一的通路. FJ希望贝茜尽快的回到农场.于是,他就指示贝茜,如果对于一条路直接相连的两个奶牛,贝茜只能拜访其中的一个.当然,贝茜希望她的假期越长越好,所以她想知道她可以拜访的奶牛的最大数目.
输入
第1行:单独的一个整数N
第2..N行:每一行两个整数,代表了一条路的C1和C2.
输出
单独的一个整数,代表了贝茜可以拜访的奶牛的最大数目.
样例输入
7
6 2
3 4
2 3
1 2
7 6
5 6
样例输出
4
题解
裸的树形dp。
f[x]代表拜访x时最大数量,g[x]代表不拜访x时最大数量。
那么易推得f[x]=1+∑g[to[i]],g[x]=∑max(f[to[i]],g[to[i]])。
答案即为max(f[1],g[1])。
#include <stdio.h>
#include <string.h>
int to[100001] , next[100001] , head[50001] , f[50001] , g[50001] , cnt;
int max(int a , int b)
{
return a > b ? a : b;
}
void add(int x , int y)
{
to[cnt] = y;
next[cnt] = head[x];
head[x] = cnt ++ ;
}
void dp(int x , int last)
{
int i , y;
f[x] = 1;
for(i = head[x] ; i != -1 ; i = next[i])
{
y = to[i];
if(y == last)
continue;
dp(y , x);
f[x] += g[y];
g[x] += max(f[y] , g[y]);
}
}
int main()
{
int n , i , x , y;
scanf("%d" , &n);
memset(head , -1 , sizeof(head));
for(i = 1 ; i <= n - 1 ; i ++ )
{
scanf("%d%d" , &x , &y);
add(x , y);
add(y , x);
}
dp(1 , 0);
printf("%d\n" , max(f[1] , g[1]));
return 0;
}
【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛 树形dp的更多相关文章
- BZOJ 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛 树形DP
Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...
- [bzoj2060][Usaco2010 Nov]Visiting Cows 拜访奶牛_树形dp
Visiting Cows 拜访奶牛 bzoj-2060 Usaco-2010 Nov 题目大意:题目链接. 注释:略. 想法:看起来像支配集. 只是看起来像而已. 状态:dp[pos][flag]表 ...
- [codevs1380]没有上司的舞会([BZOJ2060][Usaco2010 Nov]Visiting Cows 拜访奶牛)
[codevs1380]没有上司的舞会 试题描述 Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现 ...
- BZOJ2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛
n<=50000个点的树,求选最多不相邻点的个数. f[i][0]=sigma max(f[j][0],f[j][1]),j为i的儿子 f[i][1]=sigma f[j][0],j同上 死于未 ...
- BZOJ 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛( dp )
树形dp..水 ------------------------------------------------------------------------ #include<cstdio& ...
- 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛
2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 252 Solved: 1 ...
- 【BZOJ】2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛(树形dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=2060 裸的树形dp d[x][1]表示访问x的数量,d[x][0]表示不访问x的数量 d[x][1] ...
- 【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛
题目描述 经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统 ...
- 【BZOJ】2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛
[算法]树形DP [题解]没有上司的舞会?233 f[x][0]=∑max(f[v][0],f[v][1]) f[x][1]=(∑f[v][0])+1 #include<cstdio> # ...
随机推荐
- MapWindow介绍
官方网站:http://www.mapwindow.org/ 网站里包含了几个开源项目 目前最新版本是Mapwindow5,之前的mapwindow4版本已经停止更新,同时Mapwindow5底层是调 ...
- Hibernate怎么用
一.为什么用Hibernate? [核心:对象关系映射] Hibernate是对jdbc的轻量级封装,可以简化数据库连接操作, 在该框架之前,数据库的操作步骤是: 1.根据连接字串获取连接 2.执行s ...
- 【BZOJ1176】[BOI2007]Mokia 摩基亚
[BZOJ1176][BOI2007]Mokia 摩基亚 题面 bzoj 洛谷 题解 显然的\(CDQ\)\(/\)树套树题 然而根本不想写树套树,那就用\(CDQ\)吧... 考虑到点\((x1,y ...
- 生产环境 tidb部署实践
TiDB 简介 TiDB 是 PingCAP 公司受 Google Spanner / F1 论文启发而设计的开源分布式 HTAP (Hybrid Transactional and Analytic ...
- spring-boot、mybatis整合
一.MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis 可以使用简单的 X ...
- PHP中strtotime()的使用
strtotime是一个非常强大的函数. 传入的参数,详见官网的介绍 本月最后一个周日 echo date('Y-m-d',strtotime('last sunday of this month') ...
- Http接口系列:如何提高Http接口用例的数据稳定性
此文已由作者王婷英授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 为了尽可能多的释放手工测试,提高测试效率,我们都会想到使用自动化测试,如http接口自动化测试.doubbo ...
- beego orm mysql
beego框架中的rom支持mysql 项目中使用到mvc模式,总结下使用方式: models中 package models import ( //使用beego orm 必备 "gith ...
- 函数返回const,以便控制访问
#include <stdio.h> class const_out_parameter{ private: ]; public: int* const_out_parameter_tes ...
- selenium--driver.switchTo()
在自动化测试中,会遇到多窗口.多iframe.多alert的情况.此时,会使用driver.switchTo()来解决. 下面时关于driver.switchTo()的详细介绍: 1.多windows ...