【BZOJ5329】【SDOI2018】战略游戏(圆方树,虚树)

题面

BZOJ

洛谷

Description

省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏。

这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着道路走到

任意其他城市。现在小C已经占领了其中至少两个城市,小Q可以摧毁一个小C没占领的城市,同时摧毁所有连接这

个城市的道路。只要在摧毁这个城市之后能够找到某两个小C占领的城市u和v,使得从u出发沿着道路无论如何都不

能走到v,那么小Q就能赢下这一局游戏。

小Q和小C一共进行了q局游戏,每一局游戏会给出小C占领的城市集合S

你需要帮小Q数出有多少个城市在他摧毁之后能够让他赢下这一局游戏。

Input

第一行包含一个正整数T,表示测试数据的组数,

对于每组测试数据,

第一行是两个整数n和m,表示地图的城市数和道路数,

接下来m行,每行包含两个整数u和v~(1<=u<v<=n)

表示第u个城市和第v个城市之间有一条道路,同一对城市之间可能有多条道路连接,

第m+1是一个整数q,表示游戏的局数,

接下来q行,每行先给出一个整数|S|(2<=|S|<=n)

表示小C占领的城市数量,然后给出|S|个整数s1,s2,...s|S|,(1<=s1<s2<s|S|<=n),表示小C占领的城市。

1<= T<= 10,

2<= n<= 10^5 且 n-1<= m<= 210^5,

1<= q<= 10^5,

对于每组测试数据,有Sigma|S|<= 2
10^5

Output

对于每一局游戏,输出一行,包含一个整数,表示这一局游戏中有多少个城市在小Q摧毁之后能够让他赢下这一局游戏。

Sample Input

2

7 6

1 2

1 3

2 4

2 5

3 6

3 7

3

2 1 2

3 2 3 4

4 4 5 6 7

6 6

1 2

1 3

2 3

1 4

2 5

3 6

4

3 1 2 3

3 1 2 6

3 1 5 6

3 4 5 6

Sample Output

0

1

3

0

1

2

3

题解

首先把一般图构建出圆方树,

考虑若干个点的贡献,

显然是把他们连成一个最小的联通块,然后计算里面的圆点个数。

这样子答案就可以通过构建虚树计算出答案啦。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 222222
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int Tot,n,m;
struct Line{int v,next;};
struct Link
{
Line e[MAX<<2];
int h[MAX],cnt;
void init(){memset(h,0,sizeof(h));cnt=0;}
void Add(int u,int v)
{
e[++cnt]=(Line){v,h[u]};h[u]=cnt;
e[++cnt]=(Line){u,h[v]};h[v]=cnt;
}
}G,T;
namespace Graph
{
int dfn[MAX],low[MAX],tim,S[MAX],top;
void init(){memset(dfn,0,sizeof(dfn));memset(low,0,sizeof(low));tim=top=0;}
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;S[++top]=u;
for(int i=G.h[u];i;i=G.e[i].next)
{
int v=G.e[i].v;
if(!dfn[v])
{
Tarjan(v);low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u])
{
T.Add(++Tot,u);int x;
do{x=S[top--];T.Add(Tot,x);}while(v!=x);
}
}
else low[u]=min(low[u],dfn[v]);
}
}
}
namespace RST
{
int dfn[MAX],low[MAX],tim,fa[MAX],dep[MAX],top[MAX],size[MAX],hson[MAX],dis[MAX];
void init(){memset(hson,0,sizeof(hson));tim=0;}
void dfs1(int u,int ff)
{
fa[u]=ff;size[u]=1;dep[u]=dep[ff]+1;dis[u]=dis[ff]+(u<=n);
for(int i=T.h[u];i;i=T.e[i].next)
{
int v=T.e[i].v;if(v==ff)continue;
dfs1(v,u);size[u]+=size[v];
if(size[v]>size[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim;
if(hson[u])dfs2(hson[u],tp);
for(int i=T.h[u];i;i=T.e[i].next)
if(T.e[i].v!=fa[u]&&T.e[i].v!=hson[u])
dfs2(T.e[i].v,T.e[i].v);
low[u]=tim;
}
int LCA(int u,int v)
{
while(top[u]^top[v])dep[top[u]]<dep[top[v]]?v=fa[top[v]]:u=fa[top[u]];
return dep[u]<dep[v]?u:v;
}
bool cmp(int a,int b){return dfn[a]<dfn[b];}
int p[MAX],S[MAX],K;
void Solve()
{
K=read();int ans=0,len=K;
for(int i=1;i<=K;++i)p[i]=read();
sort(&p[1],&p[K+1],cmp);
for(int i=K;i>1;--i)p[++K]=LCA(p[i],p[i-1]);
sort(&p[1],&p[K+1],cmp);K=unique(&p[1],&p[K+1])-p-1;
ans=p[1]<=n;
for(int i=1,tp=0;i<=K;++i)
{
while(tp&&low[S[tp]]<dfn[p[i]])--tp;
if(tp)ans+=dis[p[i]]-dis[S[tp]];S[++tp]=p[i];
}
printf("%d\n",ans-len);
}
}
int main()
{
int TCase=read();
while(TCase--)
{
Tot=n=read();m=read();G.init();T.init();
for(int i=1;i<=m;++i)G.Add(read(),read());
Graph::init();Graph::Tarjan(1);
RST::init();RST::dfs1(1,0);RST::dfs2(1,1);
int Q=read();
while(Q--)RST::Solve();
}
return 0;
}

【BZOJ5329】【SDOI2018】战略游戏(圆方树,虚树)的更多相关文章

  1. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  2. bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)

    bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...

  3. [SDOI2018]战略游戏 圆方树,树链剖分

    [SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中 ...

  4. Luogu4606 SDOI2018 战略游戏 圆方树、虚树、链并

    传送门 弱化版 考虑到去掉一个点使得存在两个点不连通的形式类似割点,不难想到建立圆方树.那么在圆方树上对于给出的关键点建立虚树之后,我们需要求的就是虚树路径上所有圆点的数量减去关键点的数量. 因为没有 ...

  5. BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)

    题目链接 显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点. 对于询问,显然可以建虚树.但是只需要计算两关键点间路径权值,所以不需要建出虚树.统计DFS序相邻的两关键点 ...

  6. Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树

    https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...

  7. [BZOJ5329][SDOI2018]战略游戏

    bzoj luogu Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任 ...

  8. 【SDOI2018】战略游戏(同时普及虚树)

    先看一道虚树普及题:给你一棵 $n$ 个点的树,$m$ 次询问,每次询问给你 $k$ 个关键点,求把这些点都连起来的路径并的最短长度.$1\le n,m\le 100000,\space 1\le \ ...

  9. BZOJ5329: [SDOI2018]战略游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5329 https://www.luogu.org/problemnew/show/P4606 省选 ...

  10. [SDOI2018]战略游戏(圆方树+虚树)

    喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...

随机推荐

  1. underscore.js 分析 第二天

    Underscore源码中有这么句obj.length === +obj.length意思是typeof obj.length == number,即检测obj的长度是否是数字我的理解:这么写是来检测 ...

  2. jQuery File Upload 文件上传插件使用一 (最小安装 基本版)

    jQuery File Upload 是一款非常强大的文件上传处理插件,支持多文件上传,拖拽上传,进度条,文件验证及图片音视频预览,跨域上传等等. 可以说你能想到的功能它都有.你没想到的功能它也有.. ...

  3. 进度条加载与案例优化对比——python使用perf_count方法实现

    本章我们将讨论python3 perf_counter()的用法及它的实际应用我从中选取两个python基于rquests库的爬虫实例代码源文件进行举例 Python3 perf_counter() ...

  4. django 与 flask里面从已有数据库表中反向生成models

    django: 配置好数据库连接 python manage.py  inspectdb  > models.py 即可反向生成orm使用的models, 注意: > 后面可以定义为指定路 ...

  5. PAT - L2-001. 紧急救援( Dijstra )

    - PAT - L2-001. 紧急救援 题目链接 作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两 ...

  6. HDU - 6438(贪心+思维)

    链接:HDU - 6438 题意:给出 n ,表示 n 天.给出 n 个数,a[i] 表示第 i 天,物品的价格是多少.每天可以选择买一个物品,或者卖一个已有物品,也可以什么都不做,问最后最大能赚多少 ...

  7. PHP正则相关

    描述字符串排列模式的一种自定义语法规则 如果可以使用字符串函数处理的任务 就不要使用正则 正则表达式 就是通过构建具有特定规则的模式,与输入的字符信息比较 在进行 分割 匹配 查找 替换 等工作   ...

  8. Ubuntu—截屏与截取选定区域

    截屏:PrScrn(打印键) 截取选定区域:shift + PrScrn(打印键) # 截取选定区域时,先按下组合键后,鼠标的形状就会变成十字架形状,这时候再截取想要截取的区域就可以了-

  9. 环境变量PATH

    一.举例 我在用户主文件夹执行命令“ls”,会在屏幕显示该文件夹下的所有文件.然而,ls的完整文件名为“/bin/ls”,按道理我不在/bin下要想执行ls命令必须输入“/bin/ls”,但我仅仅需要 ...

  10. Java 集合框架之 Map

    Hashtable Hashtable 的实例有两个参数影响其性能:初始容量 和加载因子.容量 是哈希表中桶 的数量,初始容量就是哈希表创建时的容量.注意,哈希表的状态为 open:在发生“哈希冲突” ...