方法一:倒推,最常规的期望DP。f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
int n,a,b,c,T;
double f[N][M][M][M]; int main(){
freopen("bzoj4832.in","r",stdin);
freopen("bzoj4832.out","w",stdout);
rep(i,,) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<);
f[i][a][b][c]+=(f[i-][a][b][c]+)/(a+b+c+);
if (a) f[i][a][b][c]+=f[i-][a-][b][c]*a/(a+b+c+);
if (b) f[i][a][b][c]+=f[i-][a+][b-][c+t]*b/(a+b+c+);
if (c) f[i][a][b][c]+=f[i-][a][b+][c-+t]*c/(a+b+c+);
}
for (scanf("%d",&T); T--; )
scanf("%d%d%d%d",&n,&a,&b,&c),printf("%.2lf\n",f[n][a][b][c]);
return ;
}

方法二:用顺推做期望DP,f[x]=(f[k]+w[k][x])*p[k][x],其中k是所有能到达x的状态,w[k][x]表示这个转移的代价(攻击随从时为0,攻击英雄时为1),p[k][x]是x由k得到的概率(注意不是k转移到x的概率)。

P(x由k得到)=P(k)*P(k转移到x)/P(x),同时维护p和f即可。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
const double eps=1e-;
int n,a,b,c,T;
double p[N][M][M][M],f[N][M][M][M]; int main(){
freopen("bzoj4832.in","r",stdin);
freopen("bzoj4832.out","w",stdout);
for (scanf("%d",&T); T--; ){
memset(p,,sizeof(p)); memset(f,,sizeof(f));
scanf("%d%d%d%d",&n,&a,&b,&c); p[][a][b][c]=; double ans=;
rep(i,,n-) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<);
p[i+][a-][b][c]+=p[i][a][b][c]*a/(a+b+c+);
p[i+][a+][b-][c+t]+=p[i][a][b][c]*b/(a+b+c+);
p[i+][a][b+][c-+t]+=p[i][a][b][c]*c/(a+b+c+);
p[i+][a][b][c]+=p[i][a][b][c]/(a+b+c+);
}
rep(i,,n-) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<); double x=f[i][a][b][c]*p[i][a][b][c];
if (p[i+][a-][b][c]>eps)
f[i+][a-][b][c]+=x*a/((a+b+c+)*p[i+][a-][b][c]);
if (p[i+][a+][b-][c+t]>eps)
f[i+][a+][b-][c+t]+=x*b/((a+b+c+)*p[i+][a+][b-][c+t]);
if (p[i+][a][b+][c-+t]>eps)
f[i+][a][b+][c-+t]+=x*c/((a+b+c+)*p[i+][a][b+][c-+t]);
if (p[i+][a][b][c]>eps)
f[i+][a][b][c]+=(f[i][a][b][c]+)*p[i][a][b][c]/((a+b+c+)*p[i+][a][b][c]);
}
rep(a,,) rep(b,,-a) rep(c,,-a-b) ans+=f[n][a][b][c]*p[n][a][b][c];
printf("%.2lf\n",ans);
}
return ;
}

方法三:同样用顺推,但这里的f是上面的f*p,转移时要考虑期望的定义

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
const double eps=1e-;
int n,a,b,c,T;
double p[N][M][M][M],f[N][M][M][M]; int main(){
for (scanf("%d",&T); T--; ){
memset(p,,sizeof(p)); memset(f,,sizeof(f));
scanf("%d%d%d%d",&n,&a,&b,&c); p[][a][b][c]=; double ans=;
rep(i,,n-) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<);
p[i+][a-][b][c]+=p[i][a][b][c]*a/(a+b+c+);
p[i+][a+][b-][c+t]+=p[i][a][b][c]*b/(a+b+c+);
p[i+][a][b+][c-+t]+=p[i][a][b][c]*c/(a+b+c+);
p[i+][a][b][c]+=p[i][a][b][c]/(a+b+c+);
}
rep(i,,n-) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<);
if (p[i+][a-][b][c]>eps)
f[i+][a-][b][c]+=f[i][a][b][c]*a/(a+b+c+);
if (p[i+][a+][b-][c+t]>eps)
f[i+][a+][b-][c+t]+=f[i][a][b][c]*b/(a+b+c+);
if (p[i+][a][b+][c-+t]>eps)
f[i+][a][b+][c-+t]+=f[i][a][b][c]*c/(a+b+c+);
if (p[i+][a][b][c]>eps)
f[i+][a][b][c]+=(f[i][a][b][c]+p[i][a][b][c])/(a+b+c+);
}
rep(a,,) rep(b,,-a) rep(c,,-a-b) ans+=f[n][a][b][c];
printf("%.2lf\n",ans);
}
return ;
}

[BZOJ4832]抵制克苏恩(概率期望DP)的更多相关文章

  1. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  2. bzoj 4832 抵制克苏恩 概率期望dp

    考试时又翻车了..... 一定要及时调整自己的思路!!! 随从最多有7个,只有三种,所以把每一种随从多开一维 so:f[i][j][k][l]为到第i次攻击前,场上有j个1血,k个2血,l个3血随从的 ...

  3. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  4. 【BZOJ 4832 】 4832: [Lydsy2017年4月月赛]抵制克苏恩 (期望DP)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 275  Solved: 87 Descripti ...

  5. [bzoj4832]抵制克苏恩 概率dp

    考试的时候打了个搜索,时间比较短,样例又非常的弱,实在不太清楚他这个到底是什么意思. 不过lc大神好腻害,讲解了一下非常的清楚了. f[i][j][k][l]表示第i次伤害(啊),一滴血j个,两滴血k ...

  6. [BZOJ4832]抵制克苏恩

    [BZOJ4832]抵制克苏恩 思路: \(f[i][j][k][l]\)表示打了\(i\)次,血量为\(1\sim 3\)的随从有\(j,k,l\)个的期望.转移时注意避免重复. 源代码: #inc ...

  7. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  8. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  9. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

随机推荐

  1. 以下suse11.3x64可以安装pycrypto-2.6.1

    rpm -qa adaptec-firmware-1.35-2.15.4gnome-menus-branding-SLED-11.1-14.26man-pages-3.15-2.23.1crackli ...

  2. TCP之非阻塞connect和accept

    套接字的默认状态是阻塞的,这就意味着当发出一个不能立即完成的套接字调用时,其进程将被投入睡眠,等待响应操作完成,可能阻塞的套接字调用可分为以下四类: (1) 输入操作,包括read,readv,rec ...

  3. 安全测试===sqlmap(零)转载

    本文转自:https://blog.werner.wiki/sqlmap-study-notes-0/ 感谢作者的整理,如有侵权,立删 零.前言 这篇文章是我学习Sqlmap的用法时做的笔记,记录了S ...

  4. 自动化测试===unittest和requests接口测试案例,测试快递查询api(二)

    在原来基础上生成测试报告: 首先需要  HTMLTestRunner.py 的unittest生成报告文件 (源码,自动化测试===unittest配套的HTMLTestRunner.py生成html ...

  5. ASP.NET MVC 文件上传

    如果想要用HTML表单实作文件上传的功能,那么必须在输出的<form>表单标签加上一个enctype属性,且内容必须设定为multipart/form-data,要通过Html.Begin ...

  6. 1006. Team Rankings

    Description It's preseason and the local newspaper wants to publish a preseason ranking of the teams ...

  7. HDU 5117 Fluorescent

    题目链接:HDU-5117 题意为有n盏灯,m个开关,每个开关控制着\( k_{i} \)灯.X为最后亮着的灯的个数,要求出\( E(X^{3} ) * 2^{M} mod (10^9 + 7) \) ...

  8. js获取jsp上下文地址

    参考自博客:http://blog.csdn.net/lanchengxiaoxiao/article/details/7445498

  9. 根据日期查询年龄js

    function ages(str) { var r = str.match(/^(\d{1,4})(-|\/)(\d{1,2})\2(\d{1,2})$/); if(r==null)return f ...

  10. Redis 基础使用(1)

    redis 数据库的使用场景介绍 redis 是 NoSQL 数据库中的一种,特别适合解决一些使用传统关系数据库难以解决的问题,redis 作为内存数据库,如果在不合适的场合,对内存的消耗是很大的,甚 ...