方法一:倒推,最常规的期望DP。f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
int n,a,b,c,T;
double f[N][M][M][M]; int main(){
freopen("bzoj4832.in","r",stdin);
freopen("bzoj4832.out","w",stdout);
rep(i,,) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<);
f[i][a][b][c]+=(f[i-][a][b][c]+)/(a+b+c+);
if (a) f[i][a][b][c]+=f[i-][a-][b][c]*a/(a+b+c+);
if (b) f[i][a][b][c]+=f[i-][a+][b-][c+t]*b/(a+b+c+);
if (c) f[i][a][b][c]+=f[i-][a][b+][c-+t]*c/(a+b+c+);
}
for (scanf("%d",&T); T--; )
scanf("%d%d%d%d",&n,&a,&b,&c),printf("%.2lf\n",f[n][a][b][c]);
return ;
}

方法二:用顺推做期望DP,f[x]=(f[k]+w[k][x])*p[k][x],其中k是所有能到达x的状态,w[k][x]表示这个转移的代价(攻击随从时为0,攻击英雄时为1),p[k][x]是x由k得到的概率(注意不是k转移到x的概率)。

P(x由k得到)=P(k)*P(k转移到x)/P(x),同时维护p和f即可。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
const double eps=1e-;
int n,a,b,c,T;
double p[N][M][M][M],f[N][M][M][M]; int main(){
freopen("bzoj4832.in","r",stdin);
freopen("bzoj4832.out","w",stdout);
for (scanf("%d",&T); T--; ){
memset(p,,sizeof(p)); memset(f,,sizeof(f));
scanf("%d%d%d%d",&n,&a,&b,&c); p[][a][b][c]=; double ans=;
rep(i,,n-) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<);
p[i+][a-][b][c]+=p[i][a][b][c]*a/(a+b+c+);
p[i+][a+][b-][c+t]+=p[i][a][b][c]*b/(a+b+c+);
p[i+][a][b+][c-+t]+=p[i][a][b][c]*c/(a+b+c+);
p[i+][a][b][c]+=p[i][a][b][c]/(a+b+c+);
}
rep(i,,n-) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<); double x=f[i][a][b][c]*p[i][a][b][c];
if (p[i+][a-][b][c]>eps)
f[i+][a-][b][c]+=x*a/((a+b+c+)*p[i+][a-][b][c]);
if (p[i+][a+][b-][c+t]>eps)
f[i+][a+][b-][c+t]+=x*b/((a+b+c+)*p[i+][a+][b-][c+t]);
if (p[i+][a][b+][c-+t]>eps)
f[i+][a][b+][c-+t]+=x*c/((a+b+c+)*p[i+][a][b+][c-+t]);
if (p[i+][a][b][c]>eps)
f[i+][a][b][c]+=(f[i][a][b][c]+)*p[i][a][b][c]/((a+b+c+)*p[i+][a][b][c]);
}
rep(a,,) rep(b,,-a) rep(c,,-a-b) ans+=f[n][a][b][c]*p[n][a][b][c];
printf("%.2lf\n",ans);
}
return ;
}

方法三:同样用顺推,但这里的f是上面的f*p,转移时要考虑期望的定义

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
const double eps=1e-;
int n,a,b,c,T;
double p[N][M][M][M],f[N][M][M][M]; int main(){
for (scanf("%d",&T); T--; ){
memset(p,,sizeof(p)); memset(f,,sizeof(f));
scanf("%d%d%d%d",&n,&a,&b,&c); p[][a][b][c]=; double ans=;
rep(i,,n-) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<);
p[i+][a-][b][c]+=p[i][a][b][c]*a/(a+b+c+);
p[i+][a+][b-][c+t]+=p[i][a][b][c]*b/(a+b+c+);
p[i+][a][b+][c-+t]+=p[i][a][b][c]*c/(a+b+c+);
p[i+][a][b][c]+=p[i][a][b][c]/(a+b+c+);
}
rep(i,,n-) rep(a,,) rep(b,,-a) rep(c,,-a-b){
int t=(a+b+c<);
if (p[i+][a-][b][c]>eps)
f[i+][a-][b][c]+=f[i][a][b][c]*a/(a+b+c+);
if (p[i+][a+][b-][c+t]>eps)
f[i+][a+][b-][c+t]+=f[i][a][b][c]*b/(a+b+c+);
if (p[i+][a][b+][c-+t]>eps)
f[i+][a][b+][c-+t]+=f[i][a][b][c]*c/(a+b+c+);
if (p[i+][a][b][c]>eps)
f[i+][a][b][c]+=(f[i][a][b][c]+p[i][a][b][c])/(a+b+c+);
}
rep(a,,) rep(b,,-a) rep(c,,-a-b) ans+=f[n][a][b][c];
printf("%.2lf\n",ans);
}
return ;
}

[BZOJ4832]抵制克苏恩(概率期望DP)的更多相关文章

  1. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  2. bzoj 4832 抵制克苏恩 概率期望dp

    考试时又翻车了..... 一定要及时调整自己的思路!!! 随从最多有7个,只有三种,所以把每一种随从多开一维 so:f[i][j][k][l]为到第i次攻击前,场上有j个1血,k个2血,l个3血随从的 ...

  3. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  4. 【BZOJ 4832 】 4832: [Lydsy2017年4月月赛]抵制克苏恩 (期望DP)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 275  Solved: 87 Descripti ...

  5. [bzoj4832]抵制克苏恩 概率dp

    考试的时候打了个搜索,时间比较短,样例又非常的弱,实在不太清楚他这个到底是什么意思. 不过lc大神好腻害,讲解了一下非常的清楚了. f[i][j][k][l]表示第i次伤害(啊),一滴血j个,两滴血k ...

  6. [BZOJ4832]抵制克苏恩

    [BZOJ4832]抵制克苏恩 思路: \(f[i][j][k][l]\)表示打了\(i\)次,血量为\(1\sim 3\)的随从有\(j,k,l\)个的期望.转移时注意避免重复. 源代码: #inc ...

  7. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  8. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  9. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

随机推荐

  1. 基本控件文档-UIButton属性---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/Ch ...

  2. Hadoop和大数据:60款顶级开源工具(山东数漫江湖)

    说到处理大数据的工具,普通的开源解决方案(尤其是Apache Hadoop)堪称中流砥柱.弗雷斯特调研公司的分析师Mike Gualtieri最近预测,在接下来几年,“100%的大公司”会采用Hado ...

  3. Python【模块】importlib,requests

    内容概要:      模仿django中间件的加载方式      importlib模块      requests模块  rsplit()   用实际使用的理解来解释两个模块 importlib模块 ...

  4. linux网络编程之IO模型

    本文转自作者:huangguisu 1. 概念理解 在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)四种调用方式:同步:      所谓 ...

  5. 安全测试===sqlmap(零)转载

    本文转自:https://blog.werner.wiki/sqlmap-study-notes-0/ 感谢作者的整理,如有侵权,立删 零.前言 这篇文章是我学习Sqlmap的用法时做的笔记,记录了S ...

  6. go语言爬虫goquery和grequests的使用

    /*下载工具*/ package main import ( "fmt" //go语言版本的jquery "github.com/PuerkitoBio/goquery& ...

  7. Hadoop(hadoop,HBase)组件import到eclipse

    1.简介: 将源代码import到eclipse可以方便的阅读和修改源码. 2.环境说明: mac mvn工具(Apache Maven 3.3.3 ) 3.hadoop(CDH5.4.2) 1.进入 ...

  8. 关于eclipase出现的problems during content assist报错问题

    解决办法: 把下面箭头指的地方改为上面箭头的指向

  9. php设计模式五----适配器模式

    1.简介 适配器模式(Adapter Pattern)是作为两个不兼容的接口之间的桥梁.这种类型的设计模式属于结构型模式,它结合了两个独立接口的功能. 意图:将一个类的接口转换成客户希望的另外一个接口 ...

  10. linux命令(9):route命令

    查看路由表:route –n //添加到主机的路由 # route add –host 192.168.168.110 dev eth0 # route add –host 192.168.168.1 ...