论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding
论文《A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding》
Pruning
- by learning only the important connections.
all connections with weights below a threshold are removed from the network.
retrain the network to learn the final weights for the remaining sparse connections.
- store by compressed sparse row(CSR) or compressed sparse column(CSC) format
requires 2nnz + n + 1, nnz is the number of non-zero elements and n is the number of columns or rows.
store the index difference instead of the absolute position
by 9× and 13× for AlexNet and VGG-16 model.
Quantization
- quantize the weights to enforce weight sharing
Network quantization, further compresses the pruned network by reducing the number of bits required to represent each weight.
- Weight Sharing
- k-means clustering
- Initialization of Shared Weights
- Forgy(random).
Since there are two peaks in the bimodal distribution, Forgy method tend to concentrate around those two peaks. - Density-based.
This method makes the centroids denser around the two peaks, but more scatted than the Forgy method. - Linear initialization.
Linear initialization linearly spaces the centroids between the [min, max] of the original weights.
- Forgy(random).
- Feed-forward and Back-propagation
Huffman coding
Huffman coding
Huffman code is a type of optimal prefix code that is commonly used for loss-less data compression.
总结
这篇论文的想法是比较好的,但是因为裁剪部分权值,会导致filter矩阵的稀疏性,所以需要特别的稀疏矩阵计算库才能支持以上的操作。
论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding的更多相关文章
- Deep Learning 28:读论文“Multi Column Deep Neural Network for Traffic Sign Classification”-------MCDNN 简单理解
读这篇论文“ Multi Column Deep Neural Network for Traffic Sign Classification”是为了更加理解,论文“Multi-column Deep ...
- ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression笔记
前言 致力于滤波器的剪枝,论文的方法不改变原始网络的结构.论文的方法是基于下一层的统计信息来进行剪枝,这是区别已有方法的. VGG-16上可以减少3.31FLOPs和16.63倍的压缩,top-5的准 ...
- 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...
- 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx
- 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)
XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- A Survey of Model Compression and Acceleration for Deep Neural Network时s
A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修 ...
- 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
随机推荐
- Blue Bird
Blue Bird 哈巴他一 他拉 毛套拉那 一套一太(他)卖咋西他 闹哇 啊哦一 啊哦一 啊闹扫啦 卡那西米哇马达 哦包爱 啦来字赛次那撒哇姨妈 次卡米哈几卖他阿娜塔爱套一大 靠闹看叫毛姨妈靠逃吧你 ...
- 动态获取selected的value值
两个select选项,第一个选项可以选1-9之间的数字,第二个选项可以选0到9之间的数字,要满足成人和儿童的总和不大于9,且一个成人最多带两名儿童 <div> <span>成人 ...
- 【转】 JS实现HTML标签转义及反转义
原文地址:http://blog.600km.xyz/2015/12/15/js-encode-html-tags/ 简单说一下业务场景,前台用户通过input输入内容,在离开焦点时,将内容在div中 ...
- 6号css学习小记
一.overfloat属性:(四个值) visible :默认值.内容不会被修剪,会呈现在元素匡之外. hidden:内容会被修剪,并且其余内容是不可见的. scroll :内容会被修剪,但是浏览器会 ...
- oracle mysql sqlserver 基本操作命令
1.oracle (1) 启动 监听 lsnrctl start: (2)进入sqlplus界面 sqlplus /nolog SQL>conn sys/jiaxiaoai@orcl as s ...
- 邮件发送异常, [Errno 110] Connection timed out
邮件发送异常, [Errno 110] Connection timed out SMTP 服务地址(华东 1): smtpdm.aliyun.com SMTP 服务地址(新加坡):smtpdm-a ...
- PHP中Trait详解及其应用
w PHP中Trait详解及其应用 - 开发者日常 - SegmentFaulthttps://segmentfault.com/a/1190000008009455
- Storm-源码分析- spout (backtype.storm.spout)
1. ISpout接口 ISpout作为实现spout的核心interface, spout负责feeding message, 并且track这些message. 如果需要Spout track发出 ...
- selenium3.x的使用例子
1.需要下载selenium的相关包以备工程调用. 2.工程中配置引用selenium的lib. selenium3.x中主要是根据webdriver进行浏览器的各种操作,可以完全模仿人工操作浏览器, ...
- python 三行代码实现快速排序
python 三行代码实现快速排序 最近在看 python cookbook , 里面的例子很精彩,这里就帮过来,做个备忘录 主要利用了行数的递归调用和Python的切片特性,解释一下每行代码的含义: ...