论文《A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding》

Pruning

  • by learning only the important connections.
  1. all connections with weights below a threshold are removed from the network.

  2. retrain the network to learn the final weights for the remaining sparse connections.

  3. store by compressed sparse row(CSR) or compressed sparse column(CSC) format
    • requires 2nnz + n + 1, nnz is the number of non-zero elements and n is the number of columns or rows.

    • store the index difference instead of the absolute position

  4. by 9× and 13× for AlexNet and VGG-16 model.

Quantization

  • quantize the weights to enforce weight sharing

Network quantization, further compresses the pruned network by reducing the number of bits required to represent each weight.

  1. Weight Sharing

    • k-means clustering
  2. Initialization of Shared Weights
    • Forgy(random).
      Since there are two peaks in the bimodal distribution, Forgy method tend to concentrate around those two peaks.
    • Density-based.
      This method makes the centroids denser around the two peaks, but more scatted than the Forgy method.
    • Linear initialization.
      Linear initialization linearly spaces the centroids between the [min, max] of the original weights.
  3. Feed-forward and Back-propagation

Huffman coding

  • Huffman coding

    Huffman code is a type of optimal prefix code that is commonly used for loss-less data compression.

总结

这篇论文的想法是比较好的,但是因为裁剪部分权值,会导致filter矩阵的稀疏性,所以需要特别的稀疏矩阵计算库才能支持以上的操作。

论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding的更多相关文章

  1. Deep Learning 28:读论文“Multi Column Deep Neural Network for Traffic Sign Classification”-------MCDNN 简单理解

    读这篇论文“ Multi Column Deep Neural Network for Traffic Sign Classification”是为了更加理解,论文“Multi-column Deep ...

  2. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression笔记

    前言 致力于滤波器的剪枝,论文的方法不改变原始网络的结构.论文的方法是基于下一层的统计信息来进行剪枝,这是区别已有方法的. VGG-16上可以减少3.31FLOPs和16.63倍的压缩,top-5的准 ...

  3. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  4. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  5. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  6. A Survey of Model Compression and Acceleration for Deep Neural Network时s

    A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修 ...

  7. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  8. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  9. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

随机推荐

  1. Blue Bird

    Blue Bird 哈巴他一 他拉 毛套拉那 一套一太(他)卖咋西他 闹哇 啊哦一 啊哦一 啊闹扫啦 卡那西米哇马达 哦包爱 啦来字赛次那撒哇姨妈 次卡米哈几卖他阿娜塔爱套一大 靠闹看叫毛姨妈靠逃吧你 ...

  2. 动态获取selected的value值

    两个select选项,第一个选项可以选1-9之间的数字,第二个选项可以选0到9之间的数字,要满足成人和儿童的总和不大于9,且一个成人最多带两名儿童 <div> <span>成人 ...

  3. 【转】 JS实现HTML标签转义及反转义

    原文地址:http://blog.600km.xyz/2015/12/15/js-encode-html-tags/ 简单说一下业务场景,前台用户通过input输入内容,在离开焦点时,将内容在div中 ...

  4. 6号css学习小记

    一.overfloat属性:(四个值) visible :默认值.内容不会被修剪,会呈现在元素匡之外. hidden:内容会被修剪,并且其余内容是不可见的. scroll :内容会被修剪,但是浏览器会 ...

  5. oracle mysql sqlserver 基本操作命令

    1.oracle (1) 启动 监听 lsnrctl start: (2)进入sqlplus界面 sqlplus  /nolog SQL>conn sys/jiaxiaoai@orcl as s ...

  6. 邮件发送异常, [Errno 110] Connection timed out

    邮件发送异常,  [Errno 110] Connection timed out SMTP 服务地址(华东 1): smtpdm.aliyun.com SMTP 服务地址(新加坡):smtpdm-a ...

  7. PHP中Trait详解及其应用

    w PHP中Trait详解及其应用 - 开发者日常 - SegmentFaulthttps://segmentfault.com/a/1190000008009455

  8. Storm-源码分析- spout (backtype.storm.spout)

    1. ISpout接口 ISpout作为实现spout的核心interface, spout负责feeding message, 并且track这些message. 如果需要Spout track发出 ...

  9. selenium3.x的使用例子

    1.需要下载selenium的相关包以备工程调用. 2.工程中配置引用selenium的lib. selenium3.x中主要是根据webdriver进行浏览器的各种操作,可以完全模仿人工操作浏览器, ...

  10. python 三行代码实现快速排序

    python 三行代码实现快速排序 最近在看 python cookbook , 里面的例子很精彩,这里就帮过来,做个备忘录 主要利用了行数的递归调用和Python的切片特性,解释一下每行代码的含义: ...