论文《A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding》

Pruning

  • by learning only the important connections.
  1. all connections with weights below a threshold are removed from the network.

  2. retrain the network to learn the final weights for the remaining sparse connections.

  3. store by compressed sparse row(CSR) or compressed sparse column(CSC) format
    • requires 2nnz + n + 1, nnz is the number of non-zero elements and n is the number of columns or rows.

    • store the index difference instead of the absolute position

  4. by 9× and 13× for AlexNet and VGG-16 model.

Quantization

  • quantize the weights to enforce weight sharing

Network quantization, further compresses the pruned network by reducing the number of bits required to represent each weight.

  1. Weight Sharing

    • k-means clustering
  2. Initialization of Shared Weights
    • Forgy(random).
      Since there are two peaks in the bimodal distribution, Forgy method tend to concentrate around those two peaks.
    • Density-based.
      This method makes the centroids denser around the two peaks, but more scatted than the Forgy method.
    • Linear initialization.
      Linear initialization linearly spaces the centroids between the [min, max] of the original weights.
  3. Feed-forward and Back-propagation

Huffman coding

  • Huffman coding

    Huffman code is a type of optimal prefix code that is commonly used for loss-less data compression.

总结

这篇论文的想法是比较好的,但是因为裁剪部分权值,会导致filter矩阵的稀疏性,所以需要特别的稀疏矩阵计算库才能支持以上的操作。

论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding的更多相关文章

  1. Deep Learning 28:读论文“Multi Column Deep Neural Network for Traffic Sign Classification”-------MCDNN 简单理解

    读这篇论文“ Multi Column Deep Neural Network for Traffic Sign Classification”是为了更加理解,论文“Multi-column Deep ...

  2. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression笔记

    前言 致力于滤波器的剪枝,论文的方法不改变原始网络的结构.论文的方法是基于下一层的统计信息来进行剪枝,这是区别已有方法的. VGG-16上可以减少3.31FLOPs和16.63倍的压缩,top-5的准 ...

  3. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  4. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  5. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  6. A Survey of Model Compression and Acceleration for Deep Neural Network时s

    A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修 ...

  7. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  8. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  9. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

随机推荐

  1. dns解决测试微信二级域名访问问题

    背景介绍: 1:解决本地不能通过域名访问问题: 2:解决微信设置二级域名且本地iis站点使用非80端口号问题: ps:网站中微信部分在global中设置了重定向,代码已经修改为必须通过“wechat. ...

  2. SVN上新增一个项目和用户

    author:headsen chen date:2018-05-04  11:01:08  1,在SVN服务器上,打开SVN的软件,在项目里新建一个文件夹.在Repositories下面 2,use ...

  3. AEcs6破解版下载

    下载地址 http://pan.baidu.com/share/link?shareid=79184520&uk=1795677788 点击下载

  4. URAL 2040 Palindromes and Super Abilities 2(回文树)

    Palindromes and Super Abilities 2 Time Limit: 1MS   Memory Limit: 102400KB   64bit IO Format: %I64d ...

  5. 观《phonegap第三季 angularjs+ionic视频教程 实时发布》学习笔记(三)

    十五.ionic路由 1.ionic中内联模板介绍 使用内联模板内联模板的使用,常见的有几种情况.(1) 使用ng-include指令可以利用ng-include指令在HTML中直接使用内联模板,例如 ...

  6. delphi -----获取计算IP

    function GetHostName:String; var ComputerName: ..MAX_COMPUTERNAME_LENGTH+] of char; Size: Cardinal; ...

  7. SQL-修改: 将日期修改为空NULL、修改为空的记录

    1.将日期修改为空NULL update 表 set 字段=null where 字段='' 如果设置为‘’,会默认1900-01-01 2.修改为空的记录 update [dbo].[pub_ite ...

  8. bash短路径显示

    修改.bashrc文件vim 打开.bashrc文件,找到如下这行,有两个,都修改一下: PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ ' 将上面 ...

  9. cmake window下 sh.exe was found in your PATH, here

    在window下 mingw环境下 用 camke 编译Cpp程序 CMake Error at D:/Program Files/CMake/share/cmake-3.8/Modules/CMak ...

  10. IO 之 File 类

    位于 java.io 包 用来将文件或者文件夹封装成对象 方便对文件和文件夹的属性信息进行操作 File 对象可以作为参数传递给流的构造函数 构造函数 // 可以将一个已存在的, 或者不存在的文件或者 ...