论文《A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding》

Pruning

  • by learning only the important connections.
  1. all connections with weights below a threshold are removed from the network.

  2. retrain the network to learn the final weights for the remaining sparse connections.

  3. store by compressed sparse row(CSR) or compressed sparse column(CSC) format
    • requires 2nnz + n + 1, nnz is the number of non-zero elements and n is the number of columns or rows.

    • store the index difference instead of the absolute position

  4. by 9× and 13× for AlexNet and VGG-16 model.

Quantization

  • quantize the weights to enforce weight sharing

Network quantization, further compresses the pruned network by reducing the number of bits required to represent each weight.

  1. Weight Sharing

    • k-means clustering
  2. Initialization of Shared Weights
    • Forgy(random).
      Since there are two peaks in the bimodal distribution, Forgy method tend to concentrate around those two peaks.
    • Density-based.
      This method makes the centroids denser around the two peaks, but more scatted than the Forgy method.
    • Linear initialization.
      Linear initialization linearly spaces the centroids between the [min, max] of the original weights.
  3. Feed-forward and Back-propagation

Huffman coding

  • Huffman coding

    Huffman code is a type of optimal prefix code that is commonly used for loss-less data compression.

总结

这篇论文的想法是比较好的,但是因为裁剪部分权值,会导致filter矩阵的稀疏性,所以需要特别的稀疏矩阵计算库才能支持以上的操作。

论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding的更多相关文章

  1. Deep Learning 28:读论文“Multi Column Deep Neural Network for Traffic Sign Classification”-------MCDNN 简单理解

    读这篇论文“ Multi Column Deep Neural Network for Traffic Sign Classification”是为了更加理解,论文“Multi-column Deep ...

  2. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression笔记

    前言 致力于滤波器的剪枝,论文的方法不改变原始网络的结构.论文的方法是基于下一层的统计信息来进行剪枝,这是区别已有方法的. VGG-16上可以减少3.31FLOPs和16.63倍的压缩,top-5的准 ...

  3. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  4. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  5. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  6. A Survey of Model Compression and Acceleration for Deep Neural Network时s

    A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修 ...

  7. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  8. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  9. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

随机推荐

  1. [转]廖雪峰Git教程总结

  2. 【BZOJ4675】点对游戏 树分治+期望

    [BZOJ4675]点对游戏 Description 桑尼.露娜和斯塔在玩点对游戏,这个游戏在一棵节点数为n的树上进行. 桑尼.露娜和斯塔三人轮流从树上所有未被占有的节点中选取一点,归为己有,轮流顺序 ...

  3. Jmeter--正则表达式提取值

    博客首页:http://www.cnblogs.com/fqfanqi/ 设置界面如下: Apply to:应用范围的选择: Field to check:检查的领域,即需要提取内容的地方. 下面是各 ...

  4. [PowerShell]–Checking the version of Office installed

    – Create and initialize the object $objExcel = New-Object -ComObject Excel.Application – Query the v ...

  5. linux必学

    memcache zookeeper activemq

  6. boost:property_tree::ini_parser:::read_ini 读取ini时崩溃

    原因: 1 路径错误 2 配置文件中某一行缺少=,例如用// 做注释的,前面应该加";" 解决办法: 添加异常处理,实例代码如下: #include <boost/prope ...

  7. WTForms In Flask(WTForms在Flask中的应用)

    WTForms WTForms是一个支持多个web框架的form组件,主要用于对用户请求数据进行验证. 安装wtforms : pip3/pip install wtforms 用户登录/注册示例 项 ...

  8. python进程锁

    import time import threading import multiprocessing lock = multiprocessing.RLock() def task(arg): pr ...

  9. HDU2571:命运(简单dp)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=2571 没什么好说的,不过要处理好边界. 代码如下: #include <iostream> # ...

  10. 使用Stanford Parser进行句法分析

    一.句法分析 1.定义 句法分析判断输入的单词序列(一般为句子)的构成是否合乎给定的语法,并通过构造句法树来确定句子的结构以及各层次句法成分之间的关系,即确定一个句子中的哪些词构成一个短语,哪些词是动 ...