【点分治练习题·不虚就是要AK】点分治
不虚就是要AK(czyak.c/.cpp/.pas) 2s 128M by zhb
czy很火。因为又有人说他虚了。为了证明他不虚,他决定要在这次比赛AK。
现在他正在和别人玩一个游戏:在一棵树上随机取两个点,如果这两个点的距离是4的倍数,那么算czy赢,否则对方赢。现在czy想知道他能获胜的概率。
*最终输出的概率要求分数的分子和分母的和尽量小且非负数
本题多组数据。对于每组数据:
第一行一个数n,表示树上的节点个数
接下来n-1条边a,b,c描述a到b有一条长度为c的路径
当n=0时表示读入结束
数据组数不超过10。无部分分
输入数据
5
1 2 1
1 3 2
1 4 1
2 5 3
0
输出数据
7/25
数据范围
|
数据点 |
n的规模 |
数据组数 |
随机生成数据 |
|
1 |
200 |
1 |
是 |
|
2 |
200 |
1 |
是 |
|
3 |
200 |
<=3 |
是 |
|
4 |
2000 |
<=3 |
是 |
|
5 |
2000 |
<=3 |
是 |
|
6 |
2000 |
<=5 |
是 |
|
7 |
20000 |
<=5 |
否 |
|
8 |
20000 |
<=5 |
否 |
|
9 |
20000 |
<=10 |
否 |
|
10 |
20000 |
<=10 |
否 |
这题其实跟找距离=K的点对有多少个是一样的,我们把距离全部不断mod4就可以了。
然后就是点分治。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; const int N=;
int n,len,ans;
int v[],t[],d[N],first[N],mark[N],size[N];
struct node{
int x,y,d,next;
}a[*N]; void ins(int x,int y,int d)
{
a[++len].x=x;a[len].y=y;a[len].d=d;
a[len].next=first[x];first[x]=len;
} int gcd(int x,int y)
{
if(y==) return x;
return gcd(y,x%y);
} void find_root(int x,int fa,int tot,int &root)
{
size[x]=;
bool bk=;
for(int i=first[x];i;i=a[i].next)
{
int y=a[i].y;
if(y==fa || mark[y]) continue;
find_root(y,x,tot,root);
size[x]+=size[y];
if(*size[y]>tot) bk=;
}
if(bk && *(tot-size[x])<=tot) root=x;
} void DFS(int x,int fa)
{
int now=((-d[x])%+)%;
ans+=v[now];
t[d[x]]++;
size[x]=;
for(int i=first[x];i;i=a[i].next)
{
int y=a[i].y;
if(mark[y] || y==fa) continue;
d[y]=(d[x]+a[i].d)%;
DFS(y,x);
size[x]+=size[y];
}
} void dfs(int x,int tot)
{
find_root(x,,tot,x); memset(v,,sizeof(v));
mark[x]=;d[x]=;v[]++; for(int i=first[x];i;i=a[i].next)
{
int y=a[i].y;
if(mark[y]) continue;
d[y]=d[x]+a[i].d;
memset(t,,sizeof(t));
DFS(y,x);
for(int j=;j<;j++) v[j]+=t[j];
}
for(int i=first[x];i;i=a[i].next)
{
int y=a[i].y;
if(mark[y]) continue;
dfs(y,size[y]);
}
} int main()
{
freopen("a.in","r",stdin);
// freopen("czyak.in","r",stdin);
// freopen("czyak.out","w",stdout);
while()
{
scanf("%d",&n);
if(!n) break;
ans=;len=;
memset(mark,,sizeof(mark));
memset(first,,sizeof(first));
for(int i=;i<n;i++)
{
int x,y,d;
scanf("%d%d%d",&x,&y,&d);
d%=;
ins(x,y,d);
ins(y,x,d);
}
// for(int i=1;i<=len;i+=2) printf("%d --> %d %d\n",a[i].x,a[i].y,a[i].d);
dfs(,n);
int fz=*ans+n,fm=n*n;
int g=gcd(fz,fm);
fz/=g;fm/=g;
printf("%d/%d\n",fz,fm);
}
return ;
}
【点分治练习题·不虚就是要AK】点分治的更多相关文章
- 点分治练习:不虚就是要AK
[题面] 不虚就是要AK(czyak.c/.cpp/.pas) 2s 128M czy很火.因为又有人说他虚了.为了证明他不虚,他决定要在这次比赛AK. 现在他正在和别人玩一个游戏:在一棵树上随机取两 ...
- NOIP2016模拟赛三 Problem C: 不虚就是要AK
题目大意 给定一棵带有边权的树, 问你在树上随机选两个点, 它们最短路径上的边权之和为\(4\)的倍数的概率为多少. Solution 树分治. 没什么好讲的. #include <cstdio ...
- BZOJ5341[Ctsc2018]暴力写挂——边分治+虚树+树形DP
题目链接: CSTC2018暴力写挂 题目大意:给出n个点结构不同的两棵树,边有边权(有负权边及0边),要求找到一个点对(a,b)满足dep(a)+dep(b)-dep(lca)-dep'(lca)最 ...
- [WC2018]通道——边分治+虚树+树形DP
题目链接: [WC2018]通道 题目大意:给出三棵n个节点结构不同的树,边有边权,要求找出一个点对(a,b)使三棵树上这两点的路径权值和最大,一条路径权值为路径上所有边的边权和. 我们按照部分分逐个 ...
- UOJ347 WC2018 通道 边分治、虚树
传送门 毒瘤数据结构题qwq 设三棵树分别为$T1,T2,T3$ 先将$T1$边分治,具体步骤如下: ①多叉树->二叉树,具体操作是对于每一个父亲,建立与儿子个数相同的虚点,将父亲与这些虚点穿成 ...
- LOJ 2339 「WC2018」通道——边分治+虚树
题目:https://loj.ac/problem/2339 两棵树的话,可以用 CTSC2018 暴力写挂的方法,边分治+虚树.O(nlogn). 考虑怎么在这个方法上再加一棵树.发现很难弄. 看了 ...
- 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分
树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...
- 洛谷P4220 [WC2018]通道(边分治+虚树)
题面 传送门 题解 代码不就百来行么也不算很长丫 虽然这题随机化贪心就可以过而且速度和正解差不多不过我们还是要好好学正解 前置芝士 边分治 米娜应该都知道点分治是个什么东西,而边分治,顾名思义就是对边 ...
- 一篇自己都看不懂的点分治&点分树学习笔记
淀粉质点分治可真是个好东西 Part A.点分治 众所周知,树上分治算法有$3$种:点分治.边分治.链分治(最后一个似乎就是树链剖分),它们名字的不同是由于分治方式的不同的.点分治,顾名思义,每一次选 ...
随机推荐
- 模拟Excel同一列相同值的单元格合并
背景 项目中有一个查询工作量,可以将查询的结果导出到Excel表中.在Excel工具中,有一个合并居中功能,可以将选中的单元格合并成一个大的单元格.现在需要在程序中直接实现查询结果的汇总, 问题分析 ...
- OSG学习:响应键盘鼠标示例
示例功能:示例里面有两个模型,一个是牛,另一个是飞机.鼠标右键时牛和飞机都隐藏,鼠标左键双击时牛和飞机都显示,按键盘上面的LEFT键,显示牛,按键盘上面的RIGHT键显示飞机.其中显示与隐藏节点使用的 ...
- 3dContactPointAnnotationTool开发日志(一)
周日毕设开题报告结束后浪了一天,今天又要开始回归正轨了.毕设要做一个人和物体的接触点标注工具,听上去好像没啥难度,其实实现起来还是挺麻烦的. 今天没做啥,就弄了个3d场景做样例.把界面搭了一下 ...
- matlab如何将数组中的NAN值去除
比如我们一组数据,里面有不少的NaN值,如何将其删除掉呢?可以通过find函数来搞定. 我们可以通过importdata('data.txt')将数据文件data.txt导入数组A中. ...
- InnoDB,select为啥会阻塞insert?
MySQL的InnoDB的细粒度行锁,是它最吸引人的特性之一. 但是,如<InnoDB,5项最佳实践>所述,如果查询没有命中索引,也将退化为表锁. InnoDB的细粒度锁,是实现在索引记录 ...
- 网页中NPIO对Excel的操作实例
上一节是在wpf中实现对excel的操作方法,这一节看看网页中如何封装实现对excel的上传导入和下载保存的. 看看效果图:
- 简易js调试
1.console显示信息的命令: console.log() console.info() console.error() console.warn() 2.console信息分组 cons ...
- bzoj4555-求和
题目 \(S(i,j)\)表示第二类斯特林数,求: \[ f(n)=\sum _{i=0}^n\sum _{j=0}^iS(i,j)*2^j*j! \] 分析 公式推理很简单,关键是用到了第二类斯特林 ...
- 【bzoj4921】[Lydsy六月月赛]互质序列 暴力
题目描述 给出一个序列,要求删除一段非空区间,使得剩下的数的个数大于等于2.求所有删除方式剩下的数的最大公约数的和. 输入 第一行包含一个正整数n(3<=n<=100000),表示序列的长 ...
- Atom Editor 插件 atom-less 的使用方法
一.下载安装 atom-less atom-less 项目在这里:https://github.com/schmuli/atom-less 安装方法请参考这篇博文:http://blog.csdn.n ...