【BZOJ1093】【ZJOI2007】最大半联通子图 [DP][Tarjan]
最大半连通子图
Time Limit: 30 Sec Memory Limit: 162 MB
[Submit][Status][Discuss]
Description
一个有向图G=(V,E)称为半连通的(Semi-Connected):
如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。
若G'=(V',E')满足V'∈V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图。
若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。
若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图。
给定一个有向图G,请求出G的最大半连通子图拥有的节点数K ,以及不同的最大半连通子图的数目C。
由于C可能比较大,仅要求输出C对X的余数。
Input
第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述。
接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。
Output
应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.
Sample Input
1 2
2 1
1 3
2 4
5 6
6 4
Sample Output
3
HINT
Main idea
求最大半联通子图大小与个数。(最大半联通子图定义:在这个图内对于任意节点u,v,存在一条u->v的路径)
Solution
先跑一遍Tarjan,得到了两两连通的图,然后考虑如何加入单向连通的点集,显然两个强连通分量之间要是有连边的话,就可以满足这两个强连通分量的点单向连通,符合题意。
那么答案显然就是在缩点后的DAG(有向无环图)上的最长路径。
用拓扑+DP(本质是在拓扑序上的DP)可以求出即为Ans,然后在跑的时候用一个数组f[i]统计一下相同的个数,注意更新dist的时候也要更新f,最后如果dist[i]=Ans,那么累加f[i],即为答案。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE=; int n,m,MOD;
int x,y;
int Next[ONE],First[ONE],Go[ONE],tot;
int next[ONE],first[ONE],go[ONE],Input[ONE];
int dist[ONE];
int T,t;
int tou,wei,jishu;
int q[ONE];
int Ans,num,f[ONE];
int Dfn[ONE],Low[ONE],vis[ONE],F[ONE],Num[ONE]; struct power
{
int u,v;
}a[ONE]; int cmp(const power &a,const power &b)
{
if(a.u==b.u) return a.v<b.v;
return a.u<b.u;
} int rule(const power &a,const power &b)
{
return (a.u==b.u && a.v==b.v);
} int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int Add(int u,int v)
{
Next[++tot]=First[u]; First[u]=tot; Go[tot]=v;
} int Add_edge(int u,int v)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; Input[v]++;
} void Tarjan(int u)
{
Dfn[u]=Low[u]=++T;
vis[u]=;
q[++t]=u;
int v;
for(int e=First[u];e;e=Next[e])
{
int v=Go[e];
if(!Dfn[v])
{
Tarjan(v);
Low[u]=min(Low[u],Low[v]);
}
else if(vis[v])
Low[u]=min(Low[u],Dfn[v]);
} if(Low[u]==Dfn[u])
{
jishu++;
do
{
v=q[t--];
F[v]=jishu;
vis[v]=;
Num[jishu]=Num[jishu]+;
}while(v!=u);
}
} void Rebuild()
{
num=;
for(int u=;u<=n;u++)
{
for(int e=First[u];e;e=Next[e])
{
int v=Go[e];
if(F[u]!=F[v])
{
a[++num].u=F[u];
a[num].v=F[v];
}
}
} sort(a+,a+num+,cmp);
num=unique(a+,a+num+,rule)--a; for(int i=;i<=num;i++)
{
Add_edge(a[i].u,a[i].v);
}
} void Topufirst()
{
for(int v=;v<=jishu;v++)
{
if(!Input[v]) q[++wei]=v;
dist[v]=Num[v];
f[v]=;
Ans=max(Ans,dist[v]);
}
} void TopuA()
{
while(tou<wei)
{
int u=q[++tou];
for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(dist[v]<dist[u]+Num[v])
{
dist[v]=dist[u]+Num[v];
f[v]=f[u];
Ans=max(Ans,dist[v]);
}
else
if(dist[v]==dist[u]+Num[v]) f[v]=(f[v]+f[u])%MOD;
if(!(--Input[v])) q[++wei]=v;
}
}
} int main()
{
n=get(); m=get(); MOD=get();
for(int i=;i<=m;i++)
{
x=get(); y=get();
Add(x,y);
} for(int i=;i<=n;i++)
if(!Dfn[i]) Tarjan(i); tot=;
Rebuild(); tou=; wei=;
Topufirst(); TopuA(); tot=;
for(int i=;i<=jishu;i++)
if(dist[i]==Ans) tot=(tot+f[i])%MOD; printf("%d\n%d",Ans,tot);
}
【BZOJ1093】【ZJOI2007】最大半联通子图 [DP][Tarjan]的更多相关文章
- 【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)
[BZOJ1093][ZJOI2007]最大半联通子图(Tarjan,动态规划) 题面 BZOJ 洛谷 洛谷的讨论里面有一个好看得多的题面 题解 显然强连通分量对于题目是没有任何影响的,直接缩点就好了 ...
- bzoj1093 [ZJOI2007]最大半联通子图 缩点 + 拓扑序
最大半联通子图对应缩点后的$DAG$上的最长链 复杂度$O(n + m)$ #include <cstdio> #include <cstring> #include < ...
- bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】
题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...
- [ZJOI2007]最大半连通子图(Tarjan,拓扑序DP)
[ZJOI2007]最大半连通子图 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...
- [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...
- BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...
- 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...
- bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
随机推荐
- c# windows service 程序
service服务程序:可以长时间运行可执行应用程序.没有用户界面.可以自动启动和手动启动.适用于在服务器上或需要干扰其他工作的用户可以在同一台计算机上长时间的运行此功能. C#创建service服务 ...
- vim 删除文件全部内容
很多时候我们需要删除脚本文件全部内容, 重新再写入新的内容,进行其他的操作: 很多时候我们对应用程序的排错需要查看日志文件,然而日志中通常有许多我们以前的应用程序产生的日志,其他的日志过多的时候,有时 ...
- 【Docker 命令】- top命令
docker top :查看容器中运行的进程信息,支持 ps 命令参数. 语法 docker top [OPTIONS] CONTAINER [ps OPTIONS] 容器运行时不一定有/bin/ba ...
- Gitkraken系列-Gitkraken使用操作
一个优秀的团队合作离不开git,一个优秀的程序员也离不开git.gitkraken是我在进行软工实践这门课接触到的git的UI界面的工具,它给我留下的印象就是非常好用和方便 怎么个方便法呢? 方便的安 ...
- Thread.Sleep(0)
理解Thread.Sleep函数 我们可能经常会用到 Thread.Sleep 函数来使线程挂起一段时间.那么你有没有正确的理解这个函数的用法呢? 思考下面这两个问题: 1.假设现在是 2008-4- ...
- java-自定义标签&&JSTL标签库详解
自定义标签是Jav aWeb的一部分非常重要的核心功能,我们之前就说过,JSP规范说的很清楚,就是Jsp页面中禁止编写一行Java代码,就是最好不要有Java脚本片段,下面就来看一下自定义标签的简介: ...
- 【python】python字符串前面加u,r,b的含义
1.字符串前加 u 例:u"我是含有中文字符组成的字符串." 作用:后面字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时出 ...
- cf Round 587
A.Duff and Weight Lifting(思维) 显然题目中只有一种情况可以合并 2^a+2^a=2^(a+1).我们把给出的mi排序一下,模拟合并操作即可. # include <c ...
- P1825 [USACO11OPEN]玉米田迷宫Corn Maze
题目描述 This past fall, Farmer John took the cows to visit a corn maze. But this wasn't just any corn m ...
- BZOJ3427 Poi2013 Bytecomputer 【dp】
题目链接 BZOJ3427 题解 容易发现最终序列一定是\(\{-1,0,1\}\)组成的 因为如果有一个位置不是,那么这个位置一定大于\(1\),那么上一个位置一定为\(1\),所以该位置一定加到过 ...