【BZOJ1093】【ZJOI2007】最大半联通子图 [DP][Tarjan]
最大半连通子图
Time Limit: 30 Sec Memory Limit: 162 MB
[Submit][Status][Discuss]
Description
一个有向图G=(V,E)称为半连通的(Semi-Connected):
如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。
若G'=(V',E')满足V'∈V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图。
若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。
若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图。
给定一个有向图G,请求出G的最大半连通子图拥有的节点数K ,以及不同的最大半连通子图的数目C。
由于C可能比较大,仅要求输出C对X的余数。
Input
第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述。
接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。
Output
应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.
Sample Input
1 2
2 1
1 3
2 4
5 6
6 4
Sample Output
3
HINT
Main idea
求最大半联通子图大小与个数。(最大半联通子图定义:在这个图内对于任意节点u,v,存在一条u->v的路径)
Solution
先跑一遍Tarjan,得到了两两连通的图,然后考虑如何加入单向连通的点集,显然两个强连通分量之间要是有连边的话,就可以满足这两个强连通分量的点单向连通,符合题意。
那么答案显然就是在缩点后的DAG(有向无环图)上的最长路径。
用拓扑+DP(本质是在拓扑序上的DP)可以求出即为Ans,然后在跑的时候用一个数组f[i]统计一下相同的个数,注意更新dist的时候也要更新f,最后如果dist[i]=Ans,那么累加f[i],即为答案。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE=; int n,m,MOD;
int x,y;
int Next[ONE],First[ONE],Go[ONE],tot;
int next[ONE],first[ONE],go[ONE],Input[ONE];
int dist[ONE];
int T,t;
int tou,wei,jishu;
int q[ONE];
int Ans,num,f[ONE];
int Dfn[ONE],Low[ONE],vis[ONE],F[ONE],Num[ONE]; struct power
{
int u,v;
}a[ONE]; int cmp(const power &a,const power &b)
{
if(a.u==b.u) return a.v<b.v;
return a.u<b.u;
} int rule(const power &a,const power &b)
{
return (a.u==b.u && a.v==b.v);
} int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int Add(int u,int v)
{
Next[++tot]=First[u]; First[u]=tot; Go[tot]=v;
} int Add_edge(int u,int v)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; Input[v]++;
} void Tarjan(int u)
{
Dfn[u]=Low[u]=++T;
vis[u]=;
q[++t]=u;
int v;
for(int e=First[u];e;e=Next[e])
{
int v=Go[e];
if(!Dfn[v])
{
Tarjan(v);
Low[u]=min(Low[u],Low[v]);
}
else if(vis[v])
Low[u]=min(Low[u],Dfn[v]);
} if(Low[u]==Dfn[u])
{
jishu++;
do
{
v=q[t--];
F[v]=jishu;
vis[v]=;
Num[jishu]=Num[jishu]+;
}while(v!=u);
}
} void Rebuild()
{
num=;
for(int u=;u<=n;u++)
{
for(int e=First[u];e;e=Next[e])
{
int v=Go[e];
if(F[u]!=F[v])
{
a[++num].u=F[u];
a[num].v=F[v];
}
}
} sort(a+,a+num+,cmp);
num=unique(a+,a+num+,rule)--a; for(int i=;i<=num;i++)
{
Add_edge(a[i].u,a[i].v);
}
} void Topufirst()
{
for(int v=;v<=jishu;v++)
{
if(!Input[v]) q[++wei]=v;
dist[v]=Num[v];
f[v]=;
Ans=max(Ans,dist[v]);
}
} void TopuA()
{
while(tou<wei)
{
int u=q[++tou];
for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(dist[v]<dist[u]+Num[v])
{
dist[v]=dist[u]+Num[v];
f[v]=f[u];
Ans=max(Ans,dist[v]);
}
else
if(dist[v]==dist[u]+Num[v]) f[v]=(f[v]+f[u])%MOD;
if(!(--Input[v])) q[++wei]=v;
}
}
} int main()
{
n=get(); m=get(); MOD=get();
for(int i=;i<=m;i++)
{
x=get(); y=get();
Add(x,y);
} for(int i=;i<=n;i++)
if(!Dfn[i]) Tarjan(i); tot=;
Rebuild(); tou=; wei=;
Topufirst(); TopuA(); tot=;
for(int i=;i<=jishu;i++)
if(dist[i]==Ans) tot=(tot+f[i])%MOD; printf("%d\n%d",Ans,tot);
}
【BZOJ1093】【ZJOI2007】最大半联通子图 [DP][Tarjan]的更多相关文章
- 【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)
[BZOJ1093][ZJOI2007]最大半联通子图(Tarjan,动态规划) 题面 BZOJ 洛谷 洛谷的讨论里面有一个好看得多的题面 题解 显然强连通分量对于题目是没有任何影响的,直接缩点就好了 ...
- bzoj1093 [ZJOI2007]最大半联通子图 缩点 + 拓扑序
最大半联通子图对应缩点后的$DAG$上的最长链 复杂度$O(n + m)$ #include <cstdio> #include <cstring> #include < ...
- bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】
题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...
- [ZJOI2007]最大半连通子图(Tarjan,拓扑序DP)
[ZJOI2007]最大半连通子图 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...
- [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...
- BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...
- 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...
- bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
随机推荐
- apache 多端口访问 配置
使用本地ip:端口号,或者修改hosts文件+域名的方法来进行本地多站点web调试. 注意这里是用apache 不是iis 1: 安装好AppServ2.5.9软件,官网是:[url]http ...
- lintcode-13-字符串查找
字符串查找 对于一个给定的 source 字符串和一个 target 字符串,你应该在 source 字符串中找出 target 字符串出现的第一个位置(从0开始).如果不存在,则返回 -1. 说明 ...
- TCP系列16—重传—6、基础快速重传(Fast Retransmit)
一.快速重传介绍 按照TCP协议,RTO超时重传是一个非常重要的事件,当RTO超时的时候,TCP会同时通过两种方式非常谨慎的降低发送数据包的速率,一种是基于拥塞控制削减发送窗口的大小,另外一个是通过指 ...
- web前端之路 - 开篇
一 web发展历程 了解事物的历史有助于我们渐进式的从发展的思路清楚了解事物的来龙去脉. 这里有一篇网文写得比较清晰和完整:https://www.tianmaying.com/tutorial/we ...
- mstsc远程登录终端超出最大连接数的解决办法
1,.远程服务器有两个用户登录 2.第三个登录时提示:终端服务器超出了最大允许连接,这种情况怎么解决 A.通过运行命令来解决:运行输入mstsc /admin /v:IP:端口 敲回车来解决,这里的 ...
- springMVC视图有哪些?-009
html,json,pdf等. springMVC 使用ViewResolver来根据controller中返回的view名关联到具体的view对象. 使用view对象渲染返回值以生成最终的视图,比如 ...
- 转:浅谈深度学习(Deep Learning)的基本思想和方法
浅谈深度学习(Deep Learning)的基本思想和方法 参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep ...
- BZOJ4945 & 洛谷3825 & UOJ317:[NOI2017]游戏——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4945 https://www.luogu.org/problemnew/show/P3825 ht ...
- BZOJ1604 & 洛谷2906:[USACO2008 OPEN]Cow Neighborhoods 奶牛的邻居——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1604 https://www.luogu.org/problemnew/show/P2906#sub ...
- 无序数组中第Kth大的数
题目:找出无序数组中第Kth大的数,如{63,45,33,21},第2大的数45. 输入: 第一行输入无序数组,第二行输入K值. 该是内推滴滴打车时(2017.8.26)的第二题,也是<剑指of ...