[HNOI2008]Cards
题目描述
小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.
进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.
Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).
SOL:
输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。
所以每一种置换都是几个大小非1轮换的乘积。(若有1的话,那么就不能同时达到两个条件了,这是显然的)
所以没有一个置换(除原置换外)有不动点。
所以根据burnside引理,答案就是(a+b+c)!/(a!*b!*c!*(m+1))
而且保证p为质数,就省得打孙子剩余定理了,只要费马小定理就ok。
#include<bits/stdc++.h>
#define LL long long
#define N 123
using namespace std;
int a,b,c,d,e,fac[N],ni[N],T,answ;
LL qsm(LL x,LL y){
LL ans=;
while (y) {
if (y&) (ans*=x)%=e;
y>>=; (x*=x)%=e;
}
return ans;
}
int main () {
scanf("%d%d%d%d%d",&a,&b,&c,&d,&e);//不用读完所有的数据
fac[]=;T=a+b+c;
for (int i=;i<=T;i++) fac[i]=fac[i-]*i%e;
ni[T]=qsm(fac[T],e-);
for (int i=T;i ;i--) ni[i-]=ni[i]*i%e;
answ=fac[T]*ni[a]%e*ni[b]%e*ni[c]%e*qsm(d+,e-)%e;
printf("%d",answ);
}
[HNOI2008]Cards的更多相关文章
- 【bzoj1004】[HNOI2008]Cards
1004: [HNOI2008]Cards Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2928 Solved: 1754[Submit][Sta ...
- bzoj 1004 1004: [HNOI2008]Cards burnside定理
1004: [HNOI2008]Cards Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1668 Solved: 978[Submit][Stat ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- 【BZOJ1004】[HNOI2008]Cards Burnside引理
[BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...
- 洛谷 P1446 [HNOI2008]Cards 解题报告
P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun ...
- 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...
- luogu P1446 [HNOI2008]Cards
题目链接 luogu P1446 [HNOI2008]Cards 题解 题意就是求染色方案->等价类 洗牌方式构成成了一个置换群 然而,染色数限制不能用polay定理直接求解 考虑burnsid ...
- bzoj1004 [HNOI2008]Cards 置换群+背包
[bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...
- [HNOI2008]Cards(dp,Burnside引理)
Burnside引理: 参考自 某大佬对Burnside引理和Polya定理的讲解 相关概念 群:在数学中,群表示一个拥有满足封闭性.满足结合律.有单位元.有逆元的二元运算的代数结构. 置换群:由有限 ...
- luogu P1446 [HNOI2008]Cards burnside引理 置换 不动点
LINK:Cards 不太会burnside引理 而这道题则是一个应用. 首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换. burnside引理: 其中D( ...
随机推荐
- centos7 无法启动网络(service network restart)错误解决办法
centos7 无法启动网络(service network restart)错误解决办法: (以下方法均为网上COPY,同时感谢原博主分享) systemctl status network.ser ...
- MySQL slave_exec_mode 参数说明
背景: 今天无意当中看到参数slave_exec_mode,从手册里的说明看出该参数和MySQL复制相关,是可以动态修改的变量,默认是STRICT模式(严格模式),可选值有IDEMPOTENT模式(幂 ...
- POJ 1661 Help Jimmy(DP,注意边界)
Help Jimmy Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9399 Accepted: 3025 Descri ...
- Android事件拦截机制简单分析
前一阶段,在学习的时候,遇到了我觉得的我接触安卓以来的最多的一次事件拦截出来,那个项目,用到了slidemenu側滑菜单条,然后加上tab标签,还有轮播广告,listview上下滑动.viewpage ...
- 给新手--安装tomcat后username和password设置以及项目怎么部署在tomcatserver上
安装后tomcatserver后.登陆首先就是让输入username和password.但是我们在安装tomcat的过程中好像没有让设置username和password,这时候可能有人就抓狂了.还有 ...
- Memcached的安装与简单使用
Memcached下载 如果是Win10系统,还需要单独安装telnet服务,因为Win10把它给阉掉了.(默认下一步下一步安装) 一.安装Memcached 将Memcached解压到目录,以管理员 ...
- 用js把图片做的富有动态感,并对以后需要用着的属性进行封装
首先我们先要导入几张图片(我已导入完毕): : 好,我们先写一个 <div ></div>, 定义一个 class="contair", 在这<div ...
- linux OSI七层模型、TCP/IP协议栈及每层结构大揭秘
学习Linux,就算是像小编我这样的小萌新,也知道OSI模型.什么?!你不知道!!! 好吧,这篇秘籍拿走,不谢~~~ 一.两个协议 (1)OSI 协议模型(7层)国际协议 PDU:协议数据单元对 ...
- java萌新尝试搭建WordPress记录
问题1:安装好PHP环境没找好mysql路径,导致不能调用数据库模块 解决方案:重装一次,参考链接 https://www.cnblogs.com/yangxia-test/p/4174372.htm ...
- jenkins学习之多项目构建
多项目构建,即指的是同时构建多个源代码中的项目,我所知道的有两种方法,一种是在某个项目“构建完成后操作”中设置如下: 另外一种是借助于插件——Multijob plugin,如下: 使用方法其实比较简 ...