Building Roads
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11861   Accepted: 3376

Description

Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already connect some of the farms.

Each of the N (1 ≤ N ≤ 1,000) farms (conveniently numbered 1..N) is represented by a position (XiYi) on the plane (0 ≤ X≤ 1,000,000; 0 ≤ Y≤ 1,000,000). Given the preexisting M roads (1 ≤ M ≤ 1,000) as pairs of connected farms, help Farmer John determine the smallest length of additional roads he must build to connect all his farms.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Two space-separated integers: Xand Y
* Lines N+2..N+M+2: Two space-separated integers: i and j, indicating that there is already a road connecting the farm i and farm j.

Output

* Line 1: Smallest length of additional roads required to connect all farms, printed without rounding to two decimal places. Be sure to calculate distances as 64-bit floating point numbers.

Sample Input

4 1
1 1
3 1
2 3
4 3
1 4

Sample Output

4.00

一个最小生成树问题,kruskal算法会TLE

没什么可说i的,这玩意得存模板,这题唯一的不一样只是改变了权值为两点间距。

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
int n,m;
struct node
{
double x,y;
}a[1005];
int vis[1005];
double d[1005][1005];
double dis(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double prim()
{
memset(vis,0,sizeof(vis));
double low[1005];
int pos=1;
double ans=0;
vis[1]=1;
for(int i=2;i<=n;i++){
low[i]=d[pos][i]; }
for(int i=1;i<n;i++){
double min=INF;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&min>low[j]){
min=low[j];
pos=j;
}
}
vis[pos]=1;
ans+=min;
for(int i =1;i<=n;i++)
{
if(!vis[i]&&low[i]>d[pos][i]){
low[i]=d[pos][i];
}
}
}
return ans;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
memset(d,INF,sizeof(d));
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
}
for(int i=1;i<=n;i++){
for(int j =i+1;j<=n;j++){
d[i][j]=d[j][i]=dis(a[i],a[j]);
}
}
for(int i=0;i<m;i++){
int x,y;
scanf("%d%d",&x,&y);
d[x][y]=0;
d[y][x]=0;
}
printf("%.2f\n",prim());
}
}

  

POJ 3625 最小生成树 Prim C++的更多相关文章

  1. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  2. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  3. 最小生成树Prim算法(邻接矩阵和邻接表)

    最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...

  4. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

  5. 最小生成树Prim

    首先解释什么是最小生成树,最小生成树是指在一张图中找出一棵树,任意两点的距离已经是最短的了. 算法要点: 1.用book数组存放访问过的节点. 2.用dis数组保存对应下标的点到树的最近距离,这里要注 ...

  6. 最小生成树—prim算法

    最小生成树prim算法实现 所谓生成树,就是n个点之间连成n-1条边的图形.而最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int map[ ...

  7. 最小生成树Prim算法和Kruskal算法

    Prim算法(使用visited数组实现) Prim算法求最小生成树的时候和边数无关,和顶点树有关,所以适合求解稠密网的最小生成树. Prim算法的步骤包括: 1. 将一个图分为两部分,一部分归为点集 ...

  8. 最小生成树 Prim Kruskal

    layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...

  9. POJ.1287 Networking (Prim)

    POJ.1287 Networking (Prim) 题意分析 可能有重边,注意选择最小的边. 编号依旧从1开始. 直接跑prim即可. 代码总览 #include <cstdio> #i ...

随机推荐

  1. BTrace : Java 线上问题排查神器

    BTrace 是什么 BTrace 是检查和解决线上的问题的杀器,BTrace 可以通过编写脚本的方式,获取程序执行过程中的一切信息,并且,注意了,不用重启服务,是的,不用重启服务.写好脚本,直接用命 ...

  2. 一个基于JRTPLIB的轻量级RTSP客户端(myRTSPClient)——实现篇:(一)概览

    myRTSPClient主要可以分成3个部分: 1. RTSPClient用户接口层: 2. RTP 音视频传输解析层: 3. RTP传输层. "RTSPClient用户接口层": ...

  3. 将Windows系统默认的Administrator帐号改名为我们自定义的名称

    将Windows系统默认的Administrator帐号改名为我们自定义的名称.. ---------如何将Administrator帐号改名为我们自定义的名称:Win+R--->>输入g ...

  4. 《物联网框架ServerSuperIO教程》- 22.动态数据接口增加缓存,提高数据输出到OPCServer和(实时)数据库的效率

     22.1   概述及要解决的问题 设备驱动有DeviceDynamic接口,可以继承并增加新的实时数据属性,每次通讯完成后更新这些属性数据.原来是通过DeviceDynamic接口实体类反射的方式获 ...

  5. Spring bean中的properties元素内的name 和 ref都代表什么意思啊?

    <bean id="userAction" class="com.neusoft.gmsbs.gms.user.action.UserAction" sc ...

  6. Java中的异常和处理详解

    简介 程序运行时,发生的不被期望的事件,它阻止了程序按照程序员的预期正常执行,这就是异常.异常发生时,是任程序自生自灭,立刻退出终止,还是输出错误给用户?或者用C语言风格:用函数返回值作为执行状态?. ...

  7. 03-TypeScript中的强类型

    在js中不能定义类型,而是根据赋值后,js运行时推断类型.在ts中支持强类型,强类型包括string.number(浮点型,不是整型).boolean.any(任意类型).Array<T> ...

  8. PHP(函数)

    <script> // 获得日 var time = new Date(); var x = time.getDate(); document.write(x+"日," ...

  9. MySQL(一) -- MySQL学习路线、数据库的基础、关系型数据库、关键字说明、SQL、MySQL数据库、MySQL服务器对象、SQL的基本操作、库操作、表操作、数据操作、中文数据问题、 校对集问题、web乱码问题

    1 MySQL学习路线 基础阶段:MySQL数据库的基本操作(增删改查),以及一些高级操作(视图.触发器.函数.存储过程等). 优化阶段:如何提高数据库的效率,如索引,分表等. 部署阶段:如何搭建真实 ...

  10. C 语言 define 变参__VA_ARGS__使用

    在C语言的标准库中,printf.scanf.sscanf.sprintf.sscanf这些标准库的输入输出函数,参数都是可变的.在调试程序时,我们可能希望定义一个参数可变的输出函数来记录日志,那么用 ...