给出n个单词,如果一个单词的尾和另一个单词的头字符相等,那么可以相连,问这n个单词是否可以排成一列。欧拉路应用,构图:一个单词的头尾字母分别作为顶点,每输入一个word,该word的头指向word的尾画一个有向边,并且记录每个顶点的出入度。利用dfs先判断是否为一个连通图,如果是的话则判断是否有且仅有一个起点和终点(abs(出度-入度)=1),或是一个环

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#define maxn 100000+5
using namespace std;
string map[maxn];
int n,chu[],ru[],G[][],vst[],f,ok,c[],cnt,ts;
int init(){
cin>>n;
memset(chu,,sizeof(chu));
memset(ru,,sizeof(ru));
memset(G,,sizeof(G));
memset(vst,,sizeof(vst));
memset(c,,sizeof(c));
cnt=;
string temp;
for (int i=;i<n;i++){
cin>>map[i];
int p,q;
p=map[i][]-'a';
q=map[i][map[i].size()-]-'a';
ts=p;
if (!c[p]) {cnt++;c[p]=;}
if (!c[q]) {cnt++;c[q]=;}
G[p][q]=;
chu[p]++;ru[q]++;
}
}
int is_link(int p){
for (int j=;j<;j++){
if (G[p][j]&&!vst[j]){
vst[j]=;
f++;
is_link(j);
}
}
}
int find_start(){
int i;
for ( i=;i<;i++)
if (chu[i]-ru[i]==) return i;
if (i==) return ts;
//cout<<"find"<<ok<<endl;
}
int work(){
int t=,f=;
for (int i=;i<;i++)
if (chu[i]!=ru[i]){
if (abs(chu[i]-ru[i])==)t++;
else f=;
}
if ((t==&&f==)||(t==)) return ;
return ;
}
int main()
{
int T;
cin>>T;
while (T--){
init();
ok=;
int p;
p=find_start();
vst[p]=;
f=;
if (ok)is_link(p);
if (f!=cnt) ok=;
if (ok) ok=work();
if (ok) cout<<"Ordering is possible."<<endl;
else cout<<"The door cannot be opened."<<endl;
}
}

UVa10129,Play On Words的更多相关文章

  1. UVA10129 Play on Words —— 欧拉回路

    题目链接:https://vjudge.net/problem/UVA-10129 代码如下: // UVa10129 Play on Words // Rujia Liu // 题意:输入n个单词, ...

  2. [欧拉路径]Play on Words UVA10129

    传送门:   UVA - 10129 题目大意: 给定一些单词(可能会重复出现),判断单词是否能排成一个序列,前提是单词的最后一个字母与下一个单词的第一个字母相同.输出"The door c ...

  3. Uva10129 - Play on Words 欧拉通路 DFS

    题目链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=105& ...

  4. UVa10129(还没ac)各种re,o(╥﹏╥)o

    这是一道欧拉回路题 欧拉回路:就是一个路径包括每条边恰好一次. 判断是否满足欧拉回路.首先是图是联通的.其次图中每个点的入度等于出度.如果是欧拉路径的话,满足奇点只能等于2或0,并且对于有向图,奇点的 ...

  5. 6-16 单词 uva10129

    了解了欧拉回路和欧拉道路的性质 : 欧拉道路  最多只有两个奇点(不可能只有一个奇点)     并且当有两个奇点的时候  一个奇点入比出多一   一个奇点出比入多一 采用并查集查看是否连同   如果连 ...

  6. UVA-10129 Play on Words (判断欧拉道路的存在性)

    题目大意:给出一系列单词,当某个单词的首字母和前一个单词的尾字母相同,则这两个单词能链接起来.给出一系列单词,问是否能够连起来. 题目分析:以单词的首尾字母为点,单词为边建立有向图,便是判断图中是否存 ...

  7. 欧拉图和欧拉圈-Play On Words(UVa10129)

    欧拉路和欧拉圈,简言之就是,从无向图的一个结点出发,走一条路/圈,每条边恰好经过一次,即一笔画问题 欧拉定理:一个无向图最多只有两个奇结点,那么我们就从一个奇结点出发,到另一个结点为之,一定有一条欧拉 ...

  8. uva10129 PlayOnWords(并查集,欧拉回路)

    判断无向图是否存在欧拉回路,就是看度数为奇数的点有多少个,如果有两个,那么以那分别两个点为起点和终点,可以构造出一条欧拉回路,如果没有,就任意来,否则,欧拉回路不存在. 首先用并查集判断连通,然后统计 ...

  9. 例题6-16 单词 UVa10129

    1.题目描写叙述:点击打开链接 2.解题思路:本题利用欧拉回路存在条件解决. 能够将全部的单词看做边,26个字母看做端点,那么本题事实上就是问是否存在一条路径,能够到达全部出现过的字符端点. 因为本题 ...

随机推荐

  1. 201521123085 《Java程序设计》 第3周学习总结

    1. 本周学习总结 2. 书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; p ...

  2. 201521123080《Java程序设计》第10周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 多线程: 内涵: 指的是这个程序(一个进程)运行时产生了不止一个线程 内存模型: main memory(主 ...

  3. 201521123092《java程序设计》第十周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 2. 书面作业 本次PTA作业题集异常.多线程 1.finally 题目4-2 1.1 截图你的提交结果(出 ...

  4. linux(3)磁盘与文件系统管理/查看硬盘、内存空间/文件系统的操作/ 文件的压缩和打包

    一.磁盘与文件系统管理 1.分区与文件系统分区:记录每一个分区的开始柱面和结束柱面主引导区(master boot recorder):记录分区的数据,记录硬盘里所有的分区信息分区划分好后,要将分区格 ...

  5. 关于Linux的虚拟内存管理

    在linux中可以通过free指令查看当前内存,在后面加-m参数能让数字单位显示为MB. 一般机器,有一个实际内存和一个虚拟内存. swap就是虚拟内存,这个虚拟内存可以是文件,也可以是磁盘分区.通常 ...

  6. String的内存模型,为什么String被设计成不可变的

    String是Java中最常用的类,是不可变的(Immutable), 那么String是如何实现Immutable呢,String为什么要设计成不可变呢? 前言 关于String,收集一波基础,来源 ...

  7. wget下载整个网站

    wget下载整个网站wget下载整个网站可以使用下面的命令 wget -r -p -k -np http://hi.baidu.com/phps , -r 表示递归下载,会下载所有的链接,不过要注意的 ...

  8. Struts2的核心运行流程,原理图解

    感觉很有必要制定一个计划,这样盲目的想到哪里写到哪里,不符合我大程序员的思维逻辑呀~~~嗯...那就从基本的开始吧,循循渐进,今天想到的先写上,不能浪费了,哈哈哈................... ...

  9. NET应用——使用RSA构建相对安全的数据交互

    最近又被[现场破解共享单车系统]刷了一脸,不得不开始后怕:如何防止类似的情况发生? 想来想去,始终觉得将程序加密是最简单的做法.但是摩拜.ofo也有加密,为什么仍然被破解?那是因为请求在传输过程中被篡 ...

  10. css控制div强制换行

    div{white-space:nowrap;} 自动换行 div{ word-wrap: break-word; word-break: normal; } 强制英文单词断行 div{word-br ...