题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513

Palindrome

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4532    Accepted Submission(s): 1547

Problem Description
A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

 
Input
Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.
 
Output
Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.
 
Sample Input
5
Ab3bd
 
Sample Output
2
 
Source

题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符

思路:将该字符串与其反转求一次LCS,然后所求就是n减去最长公共子串的长度,但是要注意这里字符串最长有5000,dp数组二维都开5000的话就会超内存,这里就用到了滚动数组,因为在LCS的计算中,i的变化只相差1,所以可以通过对2取余来进行滚动

LCS: 求连个串s1,s2的最长公共自序列:dp[i][j] 表示扫描到第一个串的第i个位置第二个串的第j个位置的最长公共子序列。 当s1[i]==s2[j]时,dp[i][j] = d[i-1][j-1]+1;

当s1[i]!=s2[j]时,dp[i][j] = max(dp[i-1][j],dp[i][j-1]);

空间优化: 通过上面的转移方程可以看出来dp[i][j]的状态之和上一列和当前列有关系,所以可以通过二维滚动数组的形式来储存,通过i的奇偶来控制

下面是代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
char s1[N],s2[N];
int dp[][N];
int n; void LCS()
{
int i,j;
memset(dp,,sizeof(dp));
for(i = ; i<=n; i++)
{
for(j = ; j<=n; j++)
{
int x = i%;
int y = -x;
if(s1[i-]==s2[j-])
dp[x][j] = dp[y][j-]+;
else
dp[x][j] = max(dp[y][j],dp[x][j-]);
}
}
}
int main()
{
int i,j;
while(~scanf("%d",&n))
{
getchar();
scanf("%s",s1);
for(i = ; i < n; i++)
s2[i] = s1[n--i];
//s2[i] = '\0';
LCS();
printf("%d\n",n-dp[n%][n]);
}
return ;
}

LCS最长公共子序列~dp学习~4的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. POJ 1458 Common Subsequence(LCS最长公共子序列)

    POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  3. 动态规划模板2|LCS最长公共子序列

    LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...

  4. LCS 最长公共子序列

    区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...

  5. LCS最长公共子序列(最优线性时间O(n))

    这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...

  6. LCS最长公共子序列HDU1159

    最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...

  7. POJ 2250(LCS最长公共子序列)

    compromise Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  8. Atcoder F - LCS (DP-最长公共子序列,输出字符串)

    F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...

  9. 最长公共子序列 DP

    class Solution: def LCS(self,A,B): if not A or not B: #边界处理 return 0 dp = [[0 for _ in range(len(B)+ ...

随机推荐

  1. 小白的Python之路 day4 装饰器高潮

    首先装饰器实现的条件: 高阶函数+嵌套函数 =>装饰器 1.首先,我们先定义一个高级函数,去装饰test1函数,得不到我们想要的操作方式 import time #定义高阶函数 def deco ...

  2. open-falcon(v0.2)安装grafana部署

    下载rpm wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-4.4.3-1.x86_64.rpm 本地 ...

  3. 20行JS代码实现贪吃蛇

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 正则表达过滤表单隐藏元素,组装post数据

    <form name="form1" action="'.$serverUrl.'" method="post" > <i ...

  5. 队列详解及java实现

    导读 栈和队列是有操作限制的线性表. 目录 1.队列的概念.特点.存储结构. 2.栈队列的java实现. 概念 队列是一种在一端进行插入,而在另一端进行删除的线性表.1.队列的插入端称为队尾:队列的删 ...

  6. C#面向插件级别的软件开发 - 开源研究系列文章

    在现在的面向对象的分析与设计软件开发过程中,最开始就是面向对象的软件开发.但是,在实际的软件开发过程中,很多都是面向接口的开发方式,这种是一种面向对象开发的模式.但是,今天笔者给大家带来的是面向插件的 ...

  7. vue 全局插槽 全局插座

    场景: slot 能够让父组件内容插入到子组件中,但是子孙组件不能够使用slot直接插入内容.在弹窗的时候,全屏弹窗需要直接在组件最上层显示,如果父组件级别不够,弹出就可能不是全屏的. 知识点: 1: ...

  8. MySQL迁移方案(后续再补充)

    出处:黑洞中的奇点 的博客 http://www.cnblogs.com/kelvin19840813/ 您的支持是对博主最大的鼓励,感谢您的认真阅读.本文版权归作者所有,欢迎转载,但请保留该声明. ...

  9. Web服务器(Apache)与Servlet容器(Tomcat)

    之前一直比较迷惑Apache与Tomcat的关系,通过查询资料,有所了解,现记录于此. Apache与Tomcat 两者定位:Apache是HTTP Web服务器,Tomcat是Web容器. 有一个非 ...

  10. [Micropython]发光二极管制作炫彩跑马灯

       先甩锅 做完后才发现最后一个灯坏了,就坏了一个灯也不好意思去找淘宝店家,大家视频凑合着看把.不过并不影响实验效果.因为这个发光二极管白天不是很明显 晚上炫彩效果就能出来了.本次实验用的是8个灯珠 ...