LCS最长公共子序列~dp学习~4
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513
Palindrome
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4532 Accepted Submission(s): 1547
As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.
Ab3bd
题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符
思路:将该字符串与其反转求一次LCS,然后所求就是n减去最长公共子串的长度,但是要注意这里字符串最长有5000,dp数组二维都开5000的话就会超内存,这里就用到了滚动数组,因为在LCS的计算中,i的变化只相差1,所以可以通过对2取余来进行滚动
LCS: 求连个串s1,s2的最长公共自序列:dp[i][j] 表示扫描到第一个串的第i个位置第二个串的第j个位置的最长公共子序列。 当s1[i]==s2[j]时,dp[i][j] = d[i-1][j-1]+1;
当s1[i]!=s2[j]时,dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
空间优化: 通过上面的转移方程可以看出来dp[i][j]的状态之和上一列和当前列有关系,所以可以通过二维滚动数组的形式来储存,通过i的奇偶来控制
下面是代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
char s1[N],s2[N];
int dp[][N];
int n; void LCS()
{
int i,j;
memset(dp,,sizeof(dp));
for(i = ; i<=n; i++)
{
for(j = ; j<=n; j++)
{
int x = i%;
int y = -x;
if(s1[i-]==s2[j-])
dp[x][j] = dp[y][j-]+;
else
dp[x][j] = max(dp[y][j],dp[x][j-]);
}
}
}
int main()
{
int i,j;
while(~scanf("%d",&n))
{
getchar();
scanf("%s",s1);
for(i = ; i < n; i++)
s2[i] = s1[n--i];
//s2[i] = '\0';
LCS();
printf("%d\n",n-dp[n%][n]);
}
return ;
}
LCS最长公共子序列~dp学习~4的更多相关文章
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ 1458 Common Subsequence(LCS最长公共子序列)
POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- 动态规划模板2|LCS最长公共子序列
LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...
- LCS 最长公共子序列
区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...
- LCS最长公共子序列(最优线性时间O(n))
这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...
- LCS最长公共子序列HDU1159
最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...
- POJ 2250(LCS最长公共子序列)
compromise Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descri ...
- Atcoder F - LCS (DP-最长公共子序列,输出字符串)
F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...
- 最长公共子序列 DP
class Solution: def LCS(self,A,B): if not A or not B: #边界处理 return 0 dp = [[0 for _ in range(len(B)+ ...
随机推荐
- Smart line Panel和S7-200的MPI通信
1.系统组成 2.一个简单任务 3.设置S7-200的通信参数 1)新建工程,设置CPU类型 2)设置端口1的通讯参数PLC地址为2,波特率187.5kbps 组态 3)保存完成配置 4.组态Smar ...
- 设计模式之 - 代理模式(Proxy Pattern)
代理模式:代理是一种常用的设计模式,其目的就是为其他对象提供一个代理以控制对某个对象的访问.代理类负责为委托类预处理消息,过滤消息并转发消息,以及进行消息被委托类执行后的后续处理.很多可以框架中都有用 ...
- weex Mac开发环境
安装: 1.java的jdk下载和安装 1-1.下载.安装:省略 1-2.配置 第一步:命令行内输入touch .bash_profile命令,生成.bash_profile的隐藏配置文件,用于配置j ...
- jquery append 动态添加的元素绑定事件on
用jquery添加新元素很容易,面对jquery append 动态添加的元素事件on 不起作用我们该如何解决呢?on方法中要先找到原选择器(如例.info),再找到动态添加的选择器(如列.delet ...
- sql查询化繁为简 告别rs.getString("XX"),bean属性赋值setXX("XX")
一.在执行sql语句查询时候,查询的结果是set的map集合(ResultSet): 结果使用rs.getString("XX")获得对应属性的值,赋值到bean对象的相应的属性中 ...
- Django学习日记01_环境搭建
1. 使用Vagrant 创建ubuntu虚拟机: 首先安装vagrant,网上有比较多的方法,如:http://www.th7.cn/system/mac/201405/55421.shtml 我使 ...
- SQLServer 查看SQL语句的执行时间
在MSSQL Server中通过查看SQL语句执行所用的时间,来衡量SQL语句的性能. 通过设置STATISTICS我们可以查看执行SQL时的系统情况.选项有PROFILE,IO ,TIME.介绍如下 ...
- Head First设计模式之组合模式
一.定义 将对象组合成树形结构来表现"整体-部分"层次结构. 组合能让客户以一致的方法处理个别对象以及组合对象. 主要部分可以被一致对待问题. 在使用组合模式中需要注意一点也是组合 ...
- SecureCRT 历史版本下载
最近在使用SecureCRT时,存在网络卡顿现象,然而.同事的SecureCRT工具却一点都不卡,我的SecureCRT是比较老的版本6,同事使用的是版本7,所以就更换下自己的SecureCRT版本. ...
- [js高手之路]html5 canvas动画教程 - 重力、摩擦力、加速、抛物线运动
上节,我们讲了匀速运动,本节分享的运动就更有意思了: 加速运动 重力加速度 抛物线运动 摩擦力 加速运动: <head> <meta charset='utf-8' /> &l ...