LCS最长公共子序列~dp学习~4
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513
Palindrome
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4532 Accepted Submission(s): 1547
As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.
Ab3bd
题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符
思路:将该字符串与其反转求一次LCS,然后所求就是n减去最长公共子串的长度,但是要注意这里字符串最长有5000,dp数组二维都开5000的话就会超内存,这里就用到了滚动数组,因为在LCS的计算中,i的变化只相差1,所以可以通过对2取余来进行滚动
LCS: 求连个串s1,s2的最长公共自序列:dp[i][j] 表示扫描到第一个串的第i个位置第二个串的第j个位置的最长公共子序列。 当s1[i]==s2[j]时,dp[i][j] = d[i-1][j-1]+1;
当s1[i]!=s2[j]时,dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
空间优化: 通过上面的转移方程可以看出来dp[i][j]的状态之和上一列和当前列有关系,所以可以通过二维滚动数组的形式来储存,通过i的奇偶来控制
下面是代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
char s1[N],s2[N];
int dp[][N];
int n; void LCS()
{
int i,j;
memset(dp,,sizeof(dp));
for(i = ; i<=n; i++)
{
for(j = ; j<=n; j++)
{
int x = i%;
int y = -x;
if(s1[i-]==s2[j-])
dp[x][j] = dp[y][j-]+;
else
dp[x][j] = max(dp[y][j],dp[x][j-]);
}
}
}
int main()
{
int i,j;
while(~scanf("%d",&n))
{
getchar();
scanf("%s",s1);
for(i = ; i < n; i++)
s2[i] = s1[n--i];
//s2[i] = '\0';
LCS();
printf("%d\n",n-dp[n%][n]);
}
return ;
}
LCS最长公共子序列~dp学习~4的更多相关文章
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ 1458 Common Subsequence(LCS最长公共子序列)
POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- 动态规划模板2|LCS最长公共子序列
LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...
- LCS 最长公共子序列
区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...
- LCS最长公共子序列(最优线性时间O(n))
这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...
- LCS最长公共子序列HDU1159
最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...
- POJ 2250(LCS最长公共子序列)
compromise Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descri ...
- Atcoder F - LCS (DP-最长公共子序列,输出字符串)
F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...
- 最长公共子序列 DP
class Solution: def LCS(self,A,B): if not A or not B: #边界处理 return 0 dp = [[0 for _ in range(len(B)+ ...
随机推荐
- 小白的Python之路 day4 装饰器高潮
首先装饰器实现的条件: 高阶函数+嵌套函数 =>装饰器 1.首先,我们先定义一个高级函数,去装饰test1函数,得不到我们想要的操作方式 import time #定义高阶函数 def deco ...
- open-falcon(v0.2)安装grafana部署
下载rpm wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-4.4.3-1.x86_64.rpm 本地 ...
- 20行JS代码实现贪吃蛇
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 正则表达过滤表单隐藏元素,组装post数据
<form name="form1" action="'.$serverUrl.'" method="post" > <i ...
- 队列详解及java实现
导读 栈和队列是有操作限制的线性表. 目录 1.队列的概念.特点.存储结构. 2.栈队列的java实现. 概念 队列是一种在一端进行插入,而在另一端进行删除的线性表.1.队列的插入端称为队尾:队列的删 ...
- C#面向插件级别的软件开发 - 开源研究系列文章
在现在的面向对象的分析与设计软件开发过程中,最开始就是面向对象的软件开发.但是,在实际的软件开发过程中,很多都是面向接口的开发方式,这种是一种面向对象开发的模式.但是,今天笔者给大家带来的是面向插件的 ...
- vue 全局插槽 全局插座
场景: slot 能够让父组件内容插入到子组件中,但是子孙组件不能够使用slot直接插入内容.在弹窗的时候,全屏弹窗需要直接在组件最上层显示,如果父组件级别不够,弹出就可能不是全屏的. 知识点: 1: ...
- MySQL迁移方案(后续再补充)
出处:黑洞中的奇点 的博客 http://www.cnblogs.com/kelvin19840813/ 您的支持是对博主最大的鼓励,感谢您的认真阅读.本文版权归作者所有,欢迎转载,但请保留该声明. ...
- Web服务器(Apache)与Servlet容器(Tomcat)
之前一直比较迷惑Apache与Tomcat的关系,通过查询资料,有所了解,现记录于此. Apache与Tomcat 两者定位:Apache是HTTP Web服务器,Tomcat是Web容器. 有一个非 ...
- [Micropython]发光二极管制作炫彩跑马灯
先甩锅 做完后才发现最后一个灯坏了,就坏了一个灯也不好意思去找淘宝店家,大家视频凑合着看把.不过并不影响实验效果.因为这个发光二极管白天不是很明显 晚上炫彩效果就能出来了.本次实验用的是8个灯珠 ...