题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513

Palindrome

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4532    Accepted Submission(s): 1547

Problem Description
A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

 
Input
Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.
 
Output
Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.
 
Sample Input
5
Ab3bd
 
Sample Output
2
 
Source

题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符

思路:将该字符串与其反转求一次LCS,然后所求就是n减去最长公共子串的长度,但是要注意这里字符串最长有5000,dp数组二维都开5000的话就会超内存,这里就用到了滚动数组,因为在LCS的计算中,i的变化只相差1,所以可以通过对2取余来进行滚动

LCS: 求连个串s1,s2的最长公共自序列:dp[i][j] 表示扫描到第一个串的第i个位置第二个串的第j个位置的最长公共子序列。 当s1[i]==s2[j]时,dp[i][j] = d[i-1][j-1]+1;

当s1[i]!=s2[j]时,dp[i][j] = max(dp[i-1][j],dp[i][j-1]);

空间优化: 通过上面的转移方程可以看出来dp[i][j]的状态之和上一列和当前列有关系,所以可以通过二维滚动数组的形式来储存,通过i的奇偶来控制

下面是代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
char s1[N],s2[N];
int dp[][N];
int n; void LCS()
{
int i,j;
memset(dp,,sizeof(dp));
for(i = ; i<=n; i++)
{
for(j = ; j<=n; j++)
{
int x = i%;
int y = -x;
if(s1[i-]==s2[j-])
dp[x][j] = dp[y][j-]+;
else
dp[x][j] = max(dp[y][j],dp[x][j-]);
}
}
}
int main()
{
int i,j;
while(~scanf("%d",&n))
{
getchar();
scanf("%s",s1);
for(i = ; i < n; i++)
s2[i] = s1[n--i];
//s2[i] = '\0';
LCS();
printf("%d\n",n-dp[n%][n]);
}
return ;
}

LCS最长公共子序列~dp学习~4的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. POJ 1458 Common Subsequence(LCS最长公共子序列)

    POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  3. 动态规划模板2|LCS最长公共子序列

    LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...

  4. LCS 最长公共子序列

    区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...

  5. LCS最长公共子序列(最优线性时间O(n))

    这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...

  6. LCS最长公共子序列HDU1159

    最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...

  7. POJ 2250(LCS最长公共子序列)

    compromise Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  8. Atcoder F - LCS (DP-最长公共子序列,输出字符串)

    F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...

  9. 最长公共子序列 DP

    class Solution: def LCS(self,A,B): if not A or not B: #边界处理 return 0 dp = [[0 for _ in range(len(B)+ ...

随机推荐

  1. Smart line Panel和S7-200的MPI通信

    1.系统组成 2.一个简单任务 3.设置S7-200的通信参数 1)新建工程,设置CPU类型 2)设置端口1的通讯参数PLC地址为2,波特率187.5kbps 组态 3)保存完成配置 4.组态Smar ...

  2. 设计模式之 - 代理模式(Proxy Pattern)

    代理模式:代理是一种常用的设计模式,其目的就是为其他对象提供一个代理以控制对某个对象的访问.代理类负责为委托类预处理消息,过滤消息并转发消息,以及进行消息被委托类执行后的后续处理.很多可以框架中都有用 ...

  3. weex Mac开发环境

    安装: 1.java的jdk下载和安装 1-1.下载.安装:省略 1-2.配置 第一步:命令行内输入touch .bash_profile命令,生成.bash_profile的隐藏配置文件,用于配置j ...

  4. jquery append 动态添加的元素绑定事件on

    用jquery添加新元素很容易,面对jquery append 动态添加的元素事件on 不起作用我们该如何解决呢?on方法中要先找到原选择器(如例.info),再找到动态添加的选择器(如列.delet ...

  5. sql查询化繁为简 告别rs.getString("XX"),bean属性赋值setXX("XX")

    一.在执行sql语句查询时候,查询的结果是set的map集合(ResultSet): 结果使用rs.getString("XX")获得对应属性的值,赋值到bean对象的相应的属性中 ...

  6. Django学习日记01_环境搭建

    1. 使用Vagrant 创建ubuntu虚拟机: 首先安装vagrant,网上有比较多的方法,如:http://www.th7.cn/system/mac/201405/55421.shtml 我使 ...

  7. SQLServer 查看SQL语句的执行时间

    在MSSQL Server中通过查看SQL语句执行所用的时间,来衡量SQL语句的性能. 通过设置STATISTICS我们可以查看执行SQL时的系统情况.选项有PROFILE,IO ,TIME.介绍如下 ...

  8. Head First设计模式之组合模式

    一.定义 将对象组合成树形结构来表现"整体-部分"层次结构. 组合能让客户以一致的方法处理个别对象以及组合对象. 主要部分可以被一致对待问题. 在使用组合模式中需要注意一点也是组合 ...

  9. SecureCRT 历史版本下载

    最近在使用SecureCRT时,存在网络卡顿现象,然而.同事的SecureCRT工具却一点都不卡,我的SecureCRT是比较老的版本6,同事使用的是版本7,所以就更换下自己的SecureCRT版本. ...

  10. [js高手之路]html5 canvas动画教程 - 重力、摩擦力、加速、抛物线运动

    上节,我们讲了匀速运动,本节分享的运动就更有意思了: 加速运动 重力加速度 抛物线运动 摩擦力 加速运动: <head> <meta charset='utf-8' /> &l ...