[leetcode-494-Target Sum]
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
思路:
分析:深度优先搜索,尝试每次添加+或者-,
当当前cnt为nums数组的大小的时候,判断sum与S是否相等,
如果相等就result++。sum为当前cnt步数情况下的前面所有部分的总和。
参考:
https://www.liuchuo.net/archives/3098
int result;
int findTargetSumWays(vector<int>& nums, int S) {
dfs(, , nums, S);
return result;
}
void dfs(int sum, int cnt, vector<int>& nums, int S) {
if (cnt == nums.size()) {
if (sum == S)
result++;
return;
}
dfs(sum + nums[cnt], cnt + , nums, S);
dfs(sum - nums[cnt], cnt + , nums, S);
}
如下是动态规划版本介绍,参考:https://discuss.leetcode.com/topic/76243/java-15-ms-c-3-ms-o-ns-iterative-dp-solution-using-subset-sum-with-explanation
The recursive solution is very slow, because its runtime is exponential
The original problem statement is equivalent to:
Find a subset of nums that need to be positive, and the rest of them negative, such that the sum is equal to target
Let P be the positive subset and N be the negative subset
For example:
Given nums = [1, 2, 3, 4, 5] and target = 3 then one possible solution is +1-2+3-4+5 = 3
Here positive subset is P = [1, 3, 5] and negative subset is N = [2, 4]
Then let's see how this can be converted to a subset sum problem:
sum(P) - sum(N) = target
sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)
2 * sum(P) = target + sum(nums)
So the original problem has been converted to a subset sum problem as follows:
Find a subset P of nums such that sum(P) = (target + sum(nums)) / 2
Note that the above formula has proved that target + sum(nums) must be even
We can use that fact to quickly identify inputs that do not have a solution (Thanks to @BrunoDeNadaiSarnaglia for the suggestion)
For detailed explanation on how to solve subset sum problem, you may refer to Partition Equal Subset Sum
Here is Java solution (15 ms)
public int findTargetSumWays(int[] nums, int s) {
int sum = 0;
for (int n : nums)
sum += n;
return sum < s || (s + sum) % 2 > 0 ? 0 : subsetSum(nums, (s + sum) >>> 1);
}
public int subsetSum(int[] nums, int s) {
int[] dp = new int[s + 1];
dp[0] = 1;
for (int n : nums)
for (int i = s; i >= n; i--)
dp[i] += dp[i - n];
return dp[s];
}
Here is C++ solution (3 ms)
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int s) {
int sum = accumulate(nums.begin(), nums.end(), 0);
return sum < s || (s + sum) & 1 ? 0 : subsetSum(nums, (s + sum) >> 1);
}
int subsetSum(vector<int>& nums, int s) {
int dp[s + 1] = { 0 };
dp[0] = 1;
for (int n : nums)
for (int i = s; i >= n; i--)
dp[i] += dp[i - n];
return dp[s];
}
};
Dynamic Programming方法
参考:https://zhangyuzhu13.github.io/2017/02/13/LeetCode%E4%B9%8B494.%20Target%20Sum%E6%80%9D%E8%B7%AF/
要想到DP方法需要再分析一下题目了,乍一看似乎看不出有求最优解的痕迹。我所熟悉的使用DP场景都是需要求最优解,找最优子结构的。这个问题不明显。但可以往0-1背包问题上想一想,每个数字为正或为负,同时增一倍,则变为了,每个数字不选,或选2倍。这就靠到0-1背包上了。则基数就不再是0,而是nums数组中所有数字之和为基数,在此基础上进行选2倍或不选,目标数字S也相应变为S+Sum。依靠数学公式推论为:设最后选择为正的之和为in,为负的之和为out,则有公式:
in - out = S
in + out = sum
推出:2*in = S + sum
则我们需要的就是把目标改为S+sum,把每个数字改为原来的2倍,从中选择数字,使之和为S+sum。
因此,DP解之。代码如下:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
public class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int i = 0;i < nums.length;i++){
sum += nums[i];
nums[i] *= 2;
}
if(sum < S ) return 0;
int target = sum + S;
int[] dp = new int[target+1];
dp[0] = 1;
for(int i = 0;i < nums.length; i++){
for(int j = target;j >= 0;j--){
if(j >= nums[i]){
dp[j] += dp[j-nums[i]];
}
}
}
return dp[target];
}
}
|
然后运行时间就。。到了20ms,击败80%+,DP大法好。。
[leetcode-494-Target Sum]的更多相关文章
- LN : leetcode 494 Target Sum
lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...
- [LeetCode] 494. Target Sum 目标和
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- Leetcode 494 Target Sum 动态规划 背包+滚动数据
这是一道水题,作为没有货的水货楼主如是说. 题意:已知一个数组nums {a1,a2,a3,.....,an}(其中0<ai <=1000(1<=k<=n, n<=20) ...
- [Leetcode] DP -- Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- LC 494. Target Sum
问题描述 You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 ...
- 【LeetCode】494. Target Sum 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...
- 【leetcode】494. Target Sum
题目如下: 解题思路:这题可以用动态规划来做.记dp[i][j] = x,表示使用nums的第0个到第i个之间的所有元素得到数值j有x种方法,那么很容易得到递推关系式,dp[i][j] = dp[i- ...
- 494. Target Sum - Unsolved
https://leetcode.com/problems/target-sum/#/description You are given a list of non-negative integers ...
- 494. Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- 494. Target Sum 添加标点符号求和
[抄题]: You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have ...
随机推荐
- java实现二叉树的构建以及3种遍历方法
转载自http://ocaicai.iteye.com/blog/1047397 大二下学期学习数据结构的时候用C介绍过二叉树,但是当时热衷于java就没有怎么鸟二叉树,但是对二叉树的构建及遍历一直耿 ...
- .Net程序员学用Oracle系列(27):PLSQL 之游标、异常和事务
1.游标 1.1.游标属性 1.2.隐式游标 1.3.游标处理及案例 2.异常 2.1.异常类别 2.2.异常函数 2.3.异常处理及案例 3.事务 3.1.开始事务.结束事务 3.2.自治事务 3. ...
- MyBatis之ObjectFactory
关于在MyBatis中的ObjectFactory有什么用,在官方文档中有这样的描述(大多数网上的博客都是直接引用这一描述):MyBatis 每次创建结果对象的新实例时,它都会使用一个对象工厂(Obj ...
- 用kotlin方式打开《第一行代码:Android》
参考:<第一行代码:Android>第2版--郭霖 注1:本文为原创,例子可参考郭前辈著作:<第一行代码:Android> 注2:本文不赘述android开发的基本理论,不介绍 ...
- Android 工程集成React Native 0.44 注意点
当前(2017年5月22日 )React Native开发相当火爆,但是搜索下来,没有最新版本0.44集成的教程,因此尝试了一下如何集成到Android原生工程中去.本篇旨在记录出现的问题以及应对方式 ...
- iStat for mac
iStat for mac 电脑硬件信息检测软件,安装完成后它位于"系统偏好设定"的应用程序面板,让您从选单列监测系统的各项丰富资讯,又不会占用使用者太大的桌面空间,提供的信息包括 ...
- 为什么重写equals时必须重写hashCode方法?(转发+整理)
为什么重写equals时必须重写hashCode方法? 原文地址:http://www.cnblogs.com/shenliang123/archive/2012/04/16/2452206.html ...
- R – GPU Programming for All with ‘gpuR’
INTRODUCTION GPUs (Graphic Processing Units) have become much more popular in recent years for compu ...
- 自研框架wap.js实践
示例 使用分为3个步骤: 1, 配置模板渲染中心,方便别人可以看到你的模板渲染,请求是什么关系,复杂度怎样 2, 配置事件分发中心 方便观察事件分发,事件复杂度 3,写对应的请求方法.渲染方法. ...
- Python有哪些好用的语言翻译方法
最近有个需求,要将几万条数据从日语翻译成中文.因为数据的获取和处理用的是python代码,所以想先尝试翻译部分也用python实现. 目前网上查到的翻译方法有百度.有道云以及谷歌翻译,下面会对这三个方 ...