[leetcode-494-Target Sum]
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
思路:
分析:深度优先搜索,尝试每次添加+或者-,
当当前cnt为nums数组的大小的时候,判断sum与S是否相等,
如果相等就result++。sum为当前cnt步数情况下的前面所有部分的总和。
参考:
https://www.liuchuo.net/archives/3098
int result;
int findTargetSumWays(vector<int>& nums, int S) {
dfs(, , nums, S);
return result;
}
void dfs(int sum, int cnt, vector<int>& nums, int S) {
if (cnt == nums.size()) {
if (sum == S)
result++;
return;
}
dfs(sum + nums[cnt], cnt + , nums, S);
dfs(sum - nums[cnt], cnt + , nums, S);
}
如下是动态规划版本介绍,参考:https://discuss.leetcode.com/topic/76243/java-15-ms-c-3-ms-o-ns-iterative-dp-solution-using-subset-sum-with-explanation
The recursive solution is very slow, because its runtime is exponential
The original problem statement is equivalent to:
Find a subset of nums that need to be positive, and the rest of them negative, such that the sum is equal to target
Let P be the positive subset and N be the negative subset
For example:
Given nums = [1, 2, 3, 4, 5] and target = 3 then one possible solution is +1-2+3-4+5 = 3
Here positive subset is P = [1, 3, 5] and negative subset is N = [2, 4]
Then let's see how this can be converted to a subset sum problem:
sum(P) - sum(N) = target
sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)
2 * sum(P) = target + sum(nums)
So the original problem has been converted to a subset sum problem as follows:
Find a subset P of nums such that sum(P) = (target + sum(nums)) / 2
Note that the above formula has proved that target + sum(nums) must be even
We can use that fact to quickly identify inputs that do not have a solution (Thanks to @BrunoDeNadaiSarnaglia for the suggestion)
For detailed explanation on how to solve subset sum problem, you may refer to Partition Equal Subset Sum
Here is Java solution (15 ms)
public int findTargetSumWays(int[] nums, int s) {
int sum = 0;
for (int n : nums)
sum += n;
return sum < s || (s + sum) % 2 > 0 ? 0 : subsetSum(nums, (s + sum) >>> 1);
}
public int subsetSum(int[] nums, int s) {
int[] dp = new int[s + 1];
dp[0] = 1;
for (int n : nums)
for (int i = s; i >= n; i--)
dp[i] += dp[i - n];
return dp[s];
}
Here is C++ solution (3 ms)
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int s) {
int sum = accumulate(nums.begin(), nums.end(), 0);
return sum < s || (s + sum) & 1 ? 0 : subsetSum(nums, (s + sum) >> 1);
}
int subsetSum(vector<int>& nums, int s) {
int dp[s + 1] = { 0 };
dp[0] = 1;
for (int n : nums)
for (int i = s; i >= n; i--)
dp[i] += dp[i - n];
return dp[s];
}
};
Dynamic Programming方法
参考:https://zhangyuzhu13.github.io/2017/02/13/LeetCode%E4%B9%8B494.%20Target%20Sum%E6%80%9D%E8%B7%AF/
要想到DP方法需要再分析一下题目了,乍一看似乎看不出有求最优解的痕迹。我所熟悉的使用DP场景都是需要求最优解,找最优子结构的。这个问题不明显。但可以往0-1背包问题上想一想,每个数字为正或为负,同时增一倍,则变为了,每个数字不选,或选2倍。这就靠到0-1背包上了。则基数就不再是0,而是nums数组中所有数字之和为基数,在此基础上进行选2倍或不选,目标数字S也相应变为S+Sum。依靠数学公式推论为:设最后选择为正的之和为in,为负的之和为out,则有公式:
in - out = S
in + out = sum
推出:2*in = S + sum
则我们需要的就是把目标改为S+sum,把每个数字改为原来的2倍,从中选择数字,使之和为S+sum。
因此,DP解之。代码如下:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
public class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int i = 0;i < nums.length;i++){
sum += nums[i];
nums[i] *= 2;
}
if(sum < S ) return 0;
int target = sum + S;
int[] dp = new int[target+1];
dp[0] = 1;
for(int i = 0;i < nums.length; i++){
for(int j = target;j >= 0;j--){
if(j >= nums[i]){
dp[j] += dp[j-nums[i]];
}
}
}
return dp[target];
}
}
|
然后运行时间就。。到了20ms,击败80%+,DP大法好。。
[leetcode-494-Target Sum]的更多相关文章
- LN : leetcode 494 Target Sum
lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...
- [LeetCode] 494. Target Sum 目标和
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- Leetcode 494 Target Sum 动态规划 背包+滚动数据
这是一道水题,作为没有货的水货楼主如是说. 题意:已知一个数组nums {a1,a2,a3,.....,an}(其中0<ai <=1000(1<=k<=n, n<=20) ...
- [Leetcode] DP -- Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- LC 494. Target Sum
问题描述 You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 ...
- 【LeetCode】494. Target Sum 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...
- 【leetcode】494. Target Sum
题目如下: 解题思路:这题可以用动态规划来做.记dp[i][j] = x,表示使用nums的第0个到第i个之间的所有元素得到数值j有x种方法,那么很容易得到递推关系式,dp[i][j] = dp[i- ...
- 494. Target Sum - Unsolved
https://leetcode.com/problems/target-sum/#/description You are given a list of non-negative integers ...
- 494. Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- 494. Target Sum 添加标点符号求和
[抄题]: You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have ...
随机推荐
- 【Python灰帽子--黑客与逆向工程师的Python编程之道】我的学习笔记,过程.(持续更新HOT)
我的学习笔记---python灰帽子 世界让我遍体鳞伤,但伤口长出的却是翅膀. -------------------------------------------- 前言 本书是由知名安全机构Im ...
- VMTools安装
先启动CentOS并成功登陆如下图,发现底部提示,准备安装 2.选择虚拟机菜单栏--安装VMware tools 3.光驱目录中拷贝VMwareTools-10.0.5-3228253.tar.gz到 ...
- git编译安装与常见问题解决
1. 先去官网下载一个安装包 ,假设目录/APP/ido 2. cd /APP/ido 3. tar -zxvf git-2.7.2.tar.gz 4. 安装依赖 yum -y insta ...
- SYRefresh 一款简洁易用的刷新控件 支持tableview,collectionview水平垂直刷新功能
SYRefresh 地址: https://github.com/shushaoyong/SYRefresh 一款简洁易用的刷新控件 示例程序: 默认刷新控件使用方法: //添加头部刷新控件 Sc ...
- 刨根究底字符编码之四——EASCII及ISO 8859字符编码方案
EASCII及ISO 8859字符编码方案 1. 计算机出现之后,从美国发展到欧洲,由于欧洲很多国家中所用到的字符中,除了基本的美国也用的那128个ASCII字符之外,还有很多衍生的拉丁字母等字符 ...
- React介绍(讲人话)
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px "PingFang SC"; color: #616161 } span. ...
- JMeter命令行方式运行时动态设置线程数及其他属性(动态传参)
在使用JMeter进行性能测试时,以下情况经常出现: 1.测试过程中,指定运行的线程数.指定运行循环次数不断改变: 2.访问的目标地址发生改变,端口发生改变,需要改写脚本. 上面的问题在GUI中,直接 ...
- java基础之位运算
java中常见的位运算符:&(逻辑与) |(逻辑或) ~(取反) ^(逻辑异或) >>(右移) <<(左移) >>>(无符号右移) &(逻辑与 ...
- 一天搞定CSS:边框border--02
每一个标签都是一个盒子,具体见HTML教程 因此,每一个标签有大小,有边框 1.border样式:单一样式 2.border样式:复合样式 border: 粗细 类型 颜色: 3.border方向 4 ...
- cpp(第十三章)
1.动态(晚期)联编需要显示定义复制构造函数,赋值运算符,虚构函数. 2.纯虚类不能声明对象. 3.赋值运算符的特征标随类而异. 4.返回类型协变,重新定义继承的方法,应确保与原来的原型完全相同,但如 ...