传送门

分析

我们设A[i]表示点i有几个矿,B[i]表示这之中有几个矿是第一次出现,所以点i的贡献即为

(2^B[i]-1)*(2^(A[i]-B[i]))

注意减一的原因是第一次出现的矿应至少有一个。然后我们用set维护一下就可以了。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const long long mod = ;
struct node {
long long x,y;
};
node d[];
set<long long>s;
inline bool cmp(const node a,const node b){
if(a.x==b.x)return a.y>b.y;
return a.x<b.x;
}
long long pw2[];
int main(){
long long n,m,sum=,ans=,i,j,k,cnt=;
scanf("%lld%lld",&n,&m);
pw2[]=;
for(i=;i<=n;i++)pw2[i]=pw2[i-]*%mod;
for(i=;i<=n;i++){
long long x,y;
scanf("%lld%lld",&x,&y);
d[++cnt].x=x,d[cnt].y=i;
d[++cnt].x=y,d[cnt].y=-i;
}
for(i=;i<=m;i++){
long long x;
scanf("%lld",&x);
d[++cnt].x=x;
}
sort(d+,d+cnt+,cmp);
for(i=;i<=cnt;i++){
if(!d[i].y){
ans=(ans+(pw2[s.size()]-)*pw2[sum-s.size()]%mod)%mod;
s.clear();
}
if(d[i].y>)s.insert(d[i].y),sum++;
if(d[i].y<)s.erase(-d[i].y),sum--;
}
printf("%lld\n",ans);
return ;
}

ZROI2018提高day3t2的更多相关文章

  1. ZROI2018提高day9t1

    传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...

  2. ZROI2018提高day6t2

    传送门 分析 将所有字母分别转化为1~26,之后将字符串的空位补全为0,?设为-1,我们设dp[p][c][le][ri]表示考虑le到ri个字符串且从第p位开始考虑,这一位最小填c的方案数,具体转移 ...

  3. ZROI2018提高day6t1

    传送门 分析 我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚 ...

  4. ZROI2018提高day5t3

    传送门 分析我们可以根据性质将这个序列构造成一个环:0,a[1~n],0,a[n~1] 这中间的0是为了起间隔作用的. 我们又知道b[i]=a[i-1]^a[i+1] c[i]=b[i-1]^b[i+ ...

  5. ZROI2018提高day5t2

    传送门 分析 考场上傻了,写了个树剖还莫名weila...... 实际就是按顺序考虑每个点,然后从他往上找,一边走一边将走过的边染色,如果走到以前染过色的边就停下.对于每一个a[i]的答案就是之前走过 ...

  6. ZROI2018提高day5t1

    传送门 分析 我们不难将条件转换为前缀和的形式,即 pre[i]>=pre[i-1]*2,pre[i]>0,pre[k]=n. 所以我们用dp[i][j]表示考虑到第i个数且pre[i]= ...

  7. ZROI2018提高day4t3

    传送门 分析 我们假设如果一个点是0则它的值为-1,如果一个点是1则值为1,则一个区间的答案便是max(pre[i]+sur[i]),这里的pre[i]表示此区间i点和它之前的的前缀的最大值,sur[ ...

  8. ZROI2018提高day4t2

    传送门 分析 我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个 ...

  9. ZROI2018提高day4t1

    传送门 分析 一道贪心题,我们用两个优先队列分别维护卖出的物品的价格和买入但没有卖出的物品的价格,然后逐一考虑每一个物品.对于每一个物品如果他比卖出的物品中的最低个价格,则改将现在考虑的物品卖出,将之 ...

随机推荐

  1. shell编程-条件判断与流程控制

    1.条件判断式 按照文件类型进行判断: 两种判断格式: test -e /root/install.log [ -e /root/install.log ] 判断命令是否正确执行: [ -d /roo ...

  2. HQ的测试流程

    测试流程如下图:

  3. Greenplum中角色权限及客户端认证管理

    角色权限及客户端认证管理 GP数据库逻辑结构 在GP中,Database(数据库).Schema(模式)以及Role(角色)三者之间的关系如下所示: 一个数据库下可以有多个模式,一个模式只属于一个数据 ...

  4. LeetCode 369. Plus One Linked List

    原题链接在这里:https://leetcode.com/problems/plus-one-linked-list/ 题目: Given a non-negative number represen ...

  5. LeetCode 251. Flatten 2D Vector

    原题链接在这里:https://leetcode.com/problems/flatten-2d-vector/ 题目: Implement an iterator to flatten a 2d v ...

  6. Codeforces 808D. Array Division

    题目大意 给定你一个长为\(n\)的序列,问能否在最多一次取出某一元素然后插入到某一点后可以将整个序列分成两段使得其两段的元素之和相同. \(n \leq 10^5\) 题解 发现插入操作实际上是让某 ...

  7. swing之checkbox

    import java.awt.GridLayout; import javax.swing.ButtonGroup; import javax.swing.JButton; import javax ...

  8. [转]【鹅厂网事】全局精确流量调度新思路-HttpDNS服务详解

    小编:对于互联网,域名是访问的第一跳,而这一跳很多时候会“失足”,导致访问错误内容,失败连接等,让我们在互联网上畅游的爽快瞬间消失,而对于这关键的第一跳,鹅厂也在持续深入研究和思考对策,今天小编就邀请 ...

  9. angular : copy vs extend

    While using AngularJS, we come across some situation in which we need to copy one object to another ...

  10. distinct可以用in代替(小技巧)

    distinct可以用in代替,in的好处是直接能获取所有数据,而distunct只能获取distinct的字段,不过效率肯定高一些.