ZROI2018提高day3t2
分析
我们设A[i]表示点i有几个矿,B[i]表示这之中有几个矿是第一次出现,所以点i的贡献即为
(2^B[i]-1)*(2^(A[i]-B[i]))
注意减一的原因是第一次出现的矿应至少有一个。然后我们用set维护一下就可以了。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const long long mod = ;
struct node {
long long x,y;
};
node d[];
set<long long>s;
inline bool cmp(const node a,const node b){
if(a.x==b.x)return a.y>b.y;
return a.x<b.x;
}
long long pw2[];
int main(){
long long n,m,sum=,ans=,i,j,k,cnt=;
scanf("%lld%lld",&n,&m);
pw2[]=;
for(i=;i<=n;i++)pw2[i]=pw2[i-]*%mod;
for(i=;i<=n;i++){
long long x,y;
scanf("%lld%lld",&x,&y);
d[++cnt].x=x,d[cnt].y=i;
d[++cnt].x=y,d[cnt].y=-i;
}
for(i=;i<=m;i++){
long long x;
scanf("%lld",&x);
d[++cnt].x=x;
}
sort(d+,d+cnt+,cmp);
for(i=;i<=cnt;i++){
if(!d[i].y){
ans=(ans+(pw2[s.size()]-)*pw2[sum-s.size()]%mod)%mod;
s.clear();
}
if(d[i].y>)s.insert(d[i].y),sum++;
if(d[i].y<)s.erase(-d[i].y),sum--;
}
printf("%lld\n",ans);
return ;
}
ZROI2018提高day3t2的更多相关文章
- ZROI2018提高day9t1
传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...
- ZROI2018提高day6t2
传送门 分析 将所有字母分别转化为1~26,之后将字符串的空位补全为0,?设为-1,我们设dp[p][c][le][ri]表示考虑le到ri个字符串且从第p位开始考虑,这一位最小填c的方案数,具体转移 ...
- ZROI2018提高day6t1
传送门 分析 我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚 ...
- ZROI2018提高day5t3
传送门 分析我们可以根据性质将这个序列构造成一个环:0,a[1~n],0,a[n~1] 这中间的0是为了起间隔作用的. 我们又知道b[i]=a[i-1]^a[i+1] c[i]=b[i-1]^b[i+ ...
- ZROI2018提高day5t2
传送门 分析 考场上傻了,写了个树剖还莫名weila...... 实际就是按顺序考虑每个点,然后从他往上找,一边走一边将走过的边染色,如果走到以前染过色的边就停下.对于每一个a[i]的答案就是之前走过 ...
- ZROI2018提高day5t1
传送门 分析 我们不难将条件转换为前缀和的形式,即 pre[i]>=pre[i-1]*2,pre[i]>0,pre[k]=n. 所以我们用dp[i][j]表示考虑到第i个数且pre[i]= ...
- ZROI2018提高day4t3
传送门 分析 我们假设如果一个点是0则它的值为-1,如果一个点是1则值为1,则一个区间的答案便是max(pre[i]+sur[i]),这里的pre[i]表示此区间i点和它之前的的前缀的最大值,sur[ ...
- ZROI2018提高day4t2
传送门 分析 我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个 ...
- ZROI2018提高day4t1
传送门 分析 一道贪心题,我们用两个优先队列分别维护卖出的物品的价格和买入但没有卖出的物品的价格,然后逐一考虑每一个物品.对于每一个物品如果他比卖出的物品中的最低个价格,则改将现在考虑的物品卖出,将之 ...
随机推荐
- LeetCode OJ:Binary Tree Preorder Traversal(前序遍历二叉树)
Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...
- hdu--1878--欧拉回路(并查集判断连通,欧拉回路模板题)
题目链接 /* 模板题-------判断欧拉回路 欧拉路径,无向图 1判断是否为连通图, 2判断奇点的个数为0 */ #include <iostream> #include <c ...
- Debian For ARM mysql-server install information
/**************************************************************************** * Debian For ARM mysql ...
- ZOJ - 3201 Tree of Tree (树形背包)
题意:有一棵树,树上每个结点都有一个权值,求恰好包含k个结点的子树的最大权值. 设dp[i][j]为以结点i为根的树中包含j个结点的子树的最大权值,则可以把这个结点下的每棵子树中所包含的所有子树的大小 ...
- C#面向对象(四):其他面向对象知识
前文链接: C#面向对象(一):明确几个简单的概念作为开胃菜 C#面向对象(二):封装和继承 C#面向对象(三):多态 今天是这个系列的收尾文章了,来谈谈其他面向对象知识. 1.嵌套类 1.1概念 在 ...
- [独孤九剑]Oracle知识点梳理(八)常见Exception
本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...
- 洛谷 P3048 [USACO12FEB]牛的IDCow IDs
题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...
- Python collections系列之可命名元组
可命名元组(namedtuple) 根据nametuple可以创建一个包含tuple所有功能以及其他功能的类 1.创建一个坐标类 import collections # 创建类, defaultd ...
- MySQL的瑞士军刀(转)
这里主要讲mysql运维中的一些主要工具,这些工具可能大家都用过,特别是系统管理员或者做linux服务器维护的同学可能都知道这些小工具,这 里讲得会比较多一些,除了系统监控的小工具,还包括一些mysq ...
- laravel 添加自定义类 全局自定义方法 自定义常量
添加自定义类 https://blog.csdn.net/suchfool/article/details/38758367 https://blog.csdn.net/liukai6/article ...