转自别人的博客。这里记录一下

这题是定义如下的一个数:

S(0, 0) = 1; S(n, 0) = 0 for n > 0;S(0, m) = 0 for m > 0;

S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.

也就是题中所说的把一个含有n个元素的集合分成m份,共有多少种分法。

现在题目就是要求S(n, m)的奇偶性。

如果m是一个偶数的话,那么我们可以推出 S(n, m) Ξ S(n-1, m-1) (mod 2),如果m是一个奇数的话,我们推出S(n, m) Ξ (S(n-1, m) + S(n-1, m-1)) (mod 2)。后面看到某一大牛所说的利用画图来推导这个表达式,整了一下,S(n, m)这个状态可由左边的S(n-1, m) 以及 斜下方的 S(n-2, m-2)得到。最后得到结果是c( n-m, n-m+(m-1)/2 ).

最后只要确定一个组合数是否为奇数即可,c(A, B) = B! / (A! * (B-A)!) 我们通过提取上下阶乘的2的个数即可,因为这个式子一定能够约分成整数,那么只要2这个因子没有就一定是一个奇数了。

代码:

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std; int main()
{
int T, n, m, t1, t2;
scanf("%d", &T);
while (T--) {
t1 = t2 = ;
scanf("%d %d", &n, &m);
if (m == && n) {
puts("");
continue;
}
n -= m;
m = n + (m-)/; // n此处就是n-m了
int A = n, B = m, C = (B-A);
while (B) {
t1 += B/;
B /= ;
}
while (A) {
t2 += A/;
A /= ;
}
while (C) {
t2 += C/;
C /= ;
}
if (t1 == t2) {
puts("");
}
else {
puts("");
}
}
return ;
}

UVALIVE 2431 Binary Stirling Numbers的更多相关文章

  1. poj 1430 Binary Stirling Numbers

    Binary Stirling Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1761   Accepted ...

  2. POJ1430 Binary Stirling Numbers

    @(POJ)[Stirling數, 排列組合, 數形結合] Description The Stirling number of the second kind S(n, m) stands for ...

  3. POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)

    题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1 ...

  4. 【poj1430】Binary Stirling Numbers(斯特林数+组合数)

    传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...

  5. Binary Stirling Numbers

    http://poj.org/problem?id=1430 题目: 求 第二类 斯特林数 的 奇偶性  即 求 s2 ( n , m ) % 2 : 题解: https://blog.csdn.ne ...

  6. UVALive - 6577 Binary Tree 递推+找规律

    题目链接: http://acm.hust.edu.cn/vjudge/problem/48421 Binary Tree Time Limit: 3000MS 问题描述 Binary Tree is ...

  7. UVALive 6577 Binary Tree 二叉树的LRU串

    今天继续攒人品...真开心啊O(∩_∩)O~~各种身体不舒服~~ https://icpcarchive.ecs.baylor.edu/external/65/6577.pdf 题意是这样的,现在有一 ...

  8. poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题

    题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...

  9. acm数学(转)

    这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...

随机推荐

  1. Java设置模式

    单例模式 装饰者模式 代理模式

  2. java线程安全总结 - 1 (转载)

    原文地址:http://www.jameswxx.com/java/java%E7%BA%BF%E7%A8%8B%E5%AE%89%E5%85%A8%E6%80%BB%E7%BB%93/ 最近想将ja ...

  3. PHP.15-mysqli

    从PHP5.0开始可以使用mysql(i), 是一个面向对象的技术(新加功能都会以对象形式添加) i:表示改进,1. 功能增加了, 2,效率大大增加(以后的PHP项目改成mysqli),3,更稳定 m ...

  4. textView代码设置文字居中失效 textView设置文字居中两种方法

    1.TextView的高度占据整个父控件的高度,然后设置TextView的Grayvity Center就可以了. 2.如果第一个方法不行,那么,textView的高度设置为warp_content, ...

  5. Python语法之com[1][:-7]

    strCom = com[0] + ": " + com[1][:-7] 如上应该是一个字符串合成,最后的[1][:-7],我理解是去除com[1]的最后7个字符. 比如com[0 ...

  6. USACO Section1.2 Dual Palindromes 解题报告

    dualpal解题报告 —— icedream61 博客园(转载请注明出处)-------------------------------------------------------------- ...

  7. CentOS搭建pptpd服务笔记

    pptpd.rpm 包下载.http://poptop.sourceforge.net/yum/stable/packages/ 参考资料:http://www.oschina.net/questio ...

  8. 原始套接字--arp相关

    arp请求示例 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <un ...

  9. win10&hyper上装Ubuntu出现没有找到dev fd0, sector 0 错误

    win10 hyper装 ubuntu blk_update_request:I/O error,dev sr0,sector0 错误 配置好安装重启后出现 blk_update_request: I ...

  10. android 使用LruCache缓存网络图片

    加载图片,图片如果达到一定的上限,如果没有一种合理的机制对图片进行释放必然会引起程序的崩溃. 为了避免这种情况,我们可以使用Android中LruCache来缓存下载的图片,防止程序出现OOM.   ...