题目:

给定一整数数列,问数列有多少个子序列是等差数列。

即对于包含N个数的数列A,A(0),A(1),……,A(N-1),有多少组(P(0),P(1),……,P(k))满足0<=P(0)<P(1)<……<P(k)<N,且A(P(0)),A(P(1)),……,A(P(k))为等差数列。

等差数列至少包含3个数,故必有k>=2,同时等差数列相邻两个数的差都是一样的,即A(P(1))-A(P(0) = A(P(2))-A(P(1)) = …… = A(P(k))-A(P(k-1)) = d,d被称为公差。

输入保证N个整数的取值范围均为-2^31 ~ 2^31-1,并且0<=N<=1000,同时保证输出小于2^31-1。

Example:

输入: [2, 4, 6, 8, 10]

输出: 7

题解:

来源:九章算法公众号(侵删)。

时间复杂度为O(N^2)的动态规划:

Ⅰ.我们令f(i,d)表示以A(i)结尾,公差为d的等差子序列的个数,这里我们允许存在长度为2的等差子序列(所以对于数列中任意两个数组成的子序列,我们都暂时认为其为等差子序列)。

那么对于一对(i,j),j<i,A(i)-A(j)=d,对于所有以A(j)结尾,公差为d的等差子序列来说,后面再跟上A(i)之后还是公差为d的等差子序列,但变成了以A(i)结尾,再加上一对(A(j),A(i)),就得到了所有形如(……,A(j),A(i))的等差子序列。

换言之,j将对f(i,d)贡献f(j,d)+1。故f(i,d)等于所有满足j<i且A(i)-A(j)=d的(f(j,d)+1)之和。

Ⅱ.一个问题是d的范围其实很大(-2^32+1 ~ 2^32-1),如果要对所有可能的d进行枚举,那么在时间上和空间上都是受不了的。

虽然d的取值范围很大,但是对于N个数来说,两两之差最多只可能有N(N-1)/2种;而对于1个数A(i)来说,只需考虑所有小于i的j所产生的d=A(i)-A(j),最多有i种可能。

所以,对于每一个i,可以用一个HashMap来存储键值对(d,f(i,d))。另一个问题是,我们在计算f(i,d)时,允许等差子序列长度为2(这一点是必要的,因为没有长度为2的序列的话,就没法在其末尾加上一个数得到更长的子序列),但答案要求的是所有长度至少为3的等差子序列的个数。

解决这个问题的方法有很多:在计算f(i,d)时,f(j,d)所表示的所有子序列长度都至少为2,在末尾加上A(i)之后,就成了满足条件的等差子序列,故可以在计算f(i,d)的同时累加所有f(j,d),最后即可得到正确的答案(这种写法比较简洁但不太直观);

也有一种比较容易理解的方法,那就是对所有f(i,d)之和,即所有长度至少为2的等差子序列的个数,减去长度为2的等差子序列的个数,而由于任意两个数都构成长为2的等差子序列,所以其个数为N(N-1)/2,两者相减得到的差即为正确答案。

Ⅲ.总结一下这个动态规划算法:对于每个i=0,1,2,……,N-1,创建一个HashMap存储键值对(d,f(i,d)),f(i,d)的初值为0,枚举j<i,d=A(i)-A(j),则f(i,d)增加f(j,d)+1,同时对答案增加f(j,d)。计算完所有的i之后即可得到答案。

一个小细节是,如果d不在[-2^31+1 , 2^31-1]的范围内,那么以这个d为公差的数列长度不可能是3或3以上,故对于d在这个范围外的情况可以直接跳过。

利用HashMap存取f(i,d),f(j,d)的复杂度为O(1),i,j枚举的复杂度为O(N^2),故总的时间复杂度为O(N^2)。

Solution 1 :

int getNum(const vector<int> &nums) {
if (nums.size() < ) {
return ;
}
vector<unordered_map<int, int>> map(nums.size());
int res = ;
for (int i = ; i < nums.size(); ++i){
for (int j = ; j < i; ++j) {
if (abs((long)nums[i] - nums[j]) > INT_MAX) {
continue;
}
int d = nums[i] - nums[j];
int map_i_d, map_j_d;
map_i_d = map[i].count(d) ? map[i][d] : ;
map_j_d = map[j].count(d) ? map[j][d] : ;
map_i_d += map_j_d + ;
map[i][d] = map_i_d;
res += map_j_d;
}
}
return res;
}

事实上,确定一个等差数列只需要三个数,一个是等差数列的长度L,还有两个是等差数列的最后两个数(也可以是任意两个中间的下标确定的数)。

记最后一个为E1,最后第二个为E2,则得公差d=E1-E2,通过公差可以推出等差数列中其余的数。

一个以E2,E1,结尾的等差数列,在末尾加上一个数E1+d后仍然是等差数列。于是我们可以使用动态规划求解:令g(i,j)为以A(j),A(i)结尾的等差子序列的个数(j<i),(即形如(……,A(j),A(i))的等差数列的个数),然后我们可以通过枚举倒数第三个数A(k)来统计g(i,j)。

对于形如(……,A(k),A(j))的等差子序列来说,如果有A(i)-A(j)=A(j)-A(k),那么对应的(……,A(k),A(j),A(i))也为等差子序列,同时由于(A(k),A(j))长度为2,不计入g(j,k)的中,但(A(k),A(j),A(i))应计入g(i,j)中,故将g(j,k)计算入g(i,j)时还要额外加1。

于是我们有g(i,j)=Σ(g(j,k)+1),其中k满足k<j且A(i)-A(j)=A(j)-A(k)。将所有得到的g(i,j)相加即可得到所有等差子序列的个数。这个算法的时间复杂度为O(N^3),考虑到N的范围,这样的时间复杂度可以接受,而且与上面讲的算法相比简洁许多。

Solution 2 :

int getAns(const vector<int> &nums) {
if (nums.size() < )
return ;
int n = nums.size();
vector<vector<int>> v(n, vector<int>(n, ));
int res = ;
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
for (int k = ; k < j; ++k) {
if (nums[i] - nums[j] == nums[j] - nums[k]) {
v[i][j] = v[j][k] + ;
res += v[i][j];
}
}
}
}
return res;
}

【Facebook】等差子序列个数的更多相关文章

  1. BZOJ 2124: 等差子序列

    Sol 线段树+Hash. 首先暴力 等差子序列至少3项就可以了,就枚举中项,枚举公差就可以了,只需要一个数在中项前出现,另一个数在中项前没出现过就可以了.复杂度 \(O(n^2)\) 然后我想了一个 ...

  2. [bzoj2124]等差子序列(hash+树状数组)

    我又来更博啦     2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 941  Solved: 348[Submit][Statu ...

  3. codevs 1283 等差子序列

    http://codevs.cn/problem/1283/ 题目描述 Description 给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4& ...

  4. P2757 [国家集训队]等差子序列

    P2757 [国家集训队]等差子序列 题目传送门 推荐一篇好题解 此题要求我们在一个序列中找出一个等差子序列. 显然,我们只需要考虑子序列长度len=3的情况,因为在长度为4的子序列中必定有一个长度为 ...

  5. [BZOJ2124]等差子序列/[CF452F]Permutation

    [BZOJ2124]等差子序列/[CF452F]Permutation 题目大意: 一个\(1\sim n\)的排列\(A_{1\sim n}\),询问是否存在\(i,j(i<j)\),使得\( ...

  6. bzoj 2124 等差子序列 (线段树维护hash)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1922  Solved: 714[Submit][Status][Discuss ...

  7. bzoj 2124 等差子序列 树状数组维护hash+回文串

    等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Desc ...

  8. 【bzoj2124】等差子序列 STL-bitset

    题目描述 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3),使得Ap1,Ap2,A ...

  9. 等差子序列(sequence)

    等差子序列(sequence) 题目描述 给一个1到N的排列{Ai},询问是否存在1<= p1 < p2 < p3 < p4 < p5 < - < pLen ...

随机推荐

  1. ios上ZXing库的配置流程

    本文转载至 http://blog.csdn.net/louercab/article/details/26448587 步骤 首先,用Xcode创建我们的demo, 取名TestZXing(根据自己 ...

  2. 2.二级接口ListableBeanFactory

    这个随笔主要讲的是ListableBeanFactory package org.springframework.beans.factory; import java.lang.annotation. ...

  3. output value . Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weights and bias cause only a small change in their output.

    http://neuralnetworksanddeeplearning.com/chap1.html . Sigmoid neurons are similar to perceptrons, bu ...

  4. spring属性注入方式

    一.使用有参构造注入属性 配置文件 constructor-arg标签是需注入属性的名字 User类 生成了User的有参构造函数 测试类 结果 打印出了name属性的值 二.使用set方法注入属性 ...

  5. php自定义的格式化时间示例代码

    时间刚好是5分钟前,则对应的时间戳就会被格式化为5分钟前,自定义的格式化时间方法如下,感兴趣的朋友可以参考下 如:时间刚好是5分钟前,则对应的时间戳就会被格式化为5分钟前,不多说了,直接贴上代码: 复 ...

  6. Docker容器部署tomcat出现中文乱码

    docker 容器部署tomcat后,日志文件中出现中文乱码,很多问号,中文的文件夹也是问好.先看看容器的locale: [root@docker1 ~]# docker exec -it 41de9 ...

  7. python微信库 --- itchat

    python实现微信接口——itchat模块 安装 pip install itchat 登录 itchat.auto_login() # 这种方法将会通过微信扫描二维码登录,但是这种登录的方式确实短 ...

  8. pandas.resample()

    http://www.cnblogs.com/hhh5460/p/5596340.html resample与groupby的区别:resample:在给定的时间单位内重取样groupby:对给定的数 ...

  9. ubuntu下android studio生成的unaligned apk的zipalign处理

    在ubuntu系统中使用android studio生成的apk文件始终都是unaligned apk, 在bulid.gradle中设置如下设置后,还是同样生成的是unaligned apk. mi ...

  10. DevExpress实用心得:XtraGridControl动态添加右键菜

    在使用GridControl的时候经常需要添加右键菜单. 一般的做法是自己创建菜单项,然后注册GridView的Mouse-Click事件,然后Show出定义好的菜单. 但是涉及到一些单击事件会收到编 ...