#1394 : 网络流四·最小路径覆盖

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

国庆期间正是旅游和游玩的高峰期。

小Hi和小Ho的学习小组为了研究课题,决定趁此机会派出若干个调查团去沿途查看一下H市内各个景点的游客情况。

H市一共有N个旅游景点(编号1..N),由M条单向游览路线连接。在一个景点游览完后,可以顺着游览线路前往下一个景点。

为了避免游客重复游览同一个景点,游览线路保证是没有环路的。

每一个调查团可以从任意一个景点出发,沿着计划好的游览线路依次调查,到达终点后再返回。每个景点只会有一个调查团经过,不会重复调查。

举个例子:

上图中一共派出了3个调查团:

1. 蓝色:调查景点;2

2. 橙色:调查景点;1->3->4->6

3. 绿色:调查景点;5->7

当然对于这个图还有其他的规划方式,但是最少也需要3个调查团。

由于小组内的人数有限,所以大家希望调查团的数量尽可能少,同时也要将所有的景点都进行调查。

当然,如何规划调查团线路的任务落到了小Hi和小Ho的头上。

提示:最小路径覆盖

输入

第1行:2个整数N,M。1≤N≤500,0≤M≤20,000。

第2..M+1行:2个数字u,v,表示一条有向边(u,v)。保证不会出现重复的边,且不存在环。

输出

第1行:1个整数,表示最少需要的调查团数量。

样例输入
7 7
1 2
1 3
2 4
3 4
4 5
4 6
5 7
样例输出
3

分析

最小路径覆盖=N-最大匹配数

code

 #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
const int N = ;
const int INF = 1e9;
struct Edge{
int to,nxt,c;
Edge() {}
Edge(int x,int y,int z) {to = x,c = y,nxt = z;}
}e[];
int q[],L,R,S,T,tot = ;
int dis[N],cur[N],head[N]; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2) ? EOF :*p1++;
}
inline int read() {
int x = ,f = ;char ch=nc();
for (; ch<''||ch>''; ch=nc()) if(ch=='-')f=-;
for (; ch>=''&&ch<=''; ch=nc()) x=x*+ch-'';
return x*f;
}
void add_edge(int u,int v,int c) {
e[++tot] = Edge(v,c,head[u]);head[u] = tot;
e[++tot] = Edge(u,,head[v]);head[v] = tot;
}
bool bfs() {
for (int i=; i<=T; ++i) cur[i] = head[i],dis[i] = -;
L = ,R = ;
q[++R] = S;dis[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].to;
if (dis[v] == - && e[i].c > ) {
dis[v] = dis[u]+;q[++R] = v;
if (v==T) return true;
}
}
}
return false;
}
int dfs(int u,int flow) {
if (u==T) return flow;
int used = ;
for (int &i=cur[u]; i; i=e[i].nxt) {
int v = e[i].to;
if (dis[v] == dis[u] + && e[i].c > ) {
int tmp = dfs(v,min(flow-used,e[i].c));
if (tmp > ) {
e[i].c -= tmp;e[i^].c += tmp;
used += tmp;
if (used == flow) break;
}
}
}
if (used != flow) dis[u] = -;
return used;
}
int dinic() {
int ret = ;
while (bfs()) ret += dfs(S,INF);
return ret;
} int main() {
int n = read(),m = read();
S = n + n + ,T = n + n + ;
for (int i=; i<=n; ++i) add_edge(S,i,),add_edge(i+n,T,);
for (int i=; i<=m; ++i) {
int u = read(),v = read();
add_edge(u,v+n,);
}
int ans = dinic();
printf("%d",n-ans);
return ;
}

hihocoder #1394 : 网络流四·最小路径覆盖(最小路径覆盖)的更多相关文章

  1. hihoCoder 1394 : 网络流四·最小路径覆盖

    题目链接:https://hihocoder.com/problemset/problem/1394 题目说是网络流,但是其实就是求有向无环图的最小路径覆盖. 不会网络流,只好用二分匹配了. 把每个点 ...

  2. ●hihocoder #1394 网络流四·最小路径覆盖

    题链: http://hihocoder.com/problemset/problem/1394 题解: 有向图最小路径覆盖:最少的路径条数不重不漏的覆盖所有点. 注意到在任意一个最小路径覆盖的方案下 ...

  3. POJ3308 Paratroopers(最小割/二分图最小点权覆盖)

    把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...

  4. 最短路径(给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。)

    给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 例: 输入: [ [1,3,1], [1,5,1], [ ...

  5. UVA 10480 Sabotage (网络流,最大流,最小割)

    UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...

  6. POJ 2253 Frogger【最短路变形——路径上最小的最大权】

    链接: http://poj.org/problem?id=2253 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  7. [学习笔记]最小割之最小点权覆盖&&最大点权独立集

    最小点权覆盖 给出一个二分图,每个点有一个非负点权 要求选出一些点构成一个覆盖,问点权最小是多少 建模: S到左部点,容量为点权 右部点到T,容量为点权 左部点到右部点的边,容量inf 求最小割即可. ...

  8. 【leetcode-62,63,64 动态规划】 不同路径,最小路径和

    给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5,1] ...

  9. 图-最短路-dijkstra-0/1BFS-1368. 使网格图至少有一条有效路径的最小代价

    2020-03-01 22:59:59 问题描述: 给你一个 m x n 的网格图 grid . grid 中每个格子都有一个数字,对应着从该格子出发下一步走的方向. grid[i][j] 中的数字可 ...

随机推荐

  1. System Center Configuration Manager 2016 配置安装篇(Part2)

    步骤4.安装SCCM当前分支(版本1802) 注意:以管理员身份在ConfigMgr服务器(CM01)上执行以下操作. 为此,在Configuration Manager服务器(CM16)上,打开W ...

  2. Office加载项安装

    出自我的个人主页 Alvin Blog 前言 Excel加载项离不开安装,Excel加载项本身安装及其简单,但这是在申请下来Office开发者账户之后,再次之前都得自行安装 线上安装 微软申请开发者账 ...

  3. Html : 点击按钮弹出输入框,再次点击进行隐藏

    上代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3 ...

  4. IOS 解析Json数据(NSJSONSerialization)

    ● 什么是JSON ● JSON是一种轻量级的数据格式,一般用于数据交互 ● 服务器返回给客户端的数据,一般都是JSON格式或者XML格式(文件下载除 外) ● JSON的格式很像OC中的字典和数组 ...

  5. 搭建FTP服务

    (一)FTP服务概述 FTP服务概述:名称.功能.特点.端口 VSFTP:very secure FTP  端口:21 服务安装#yum install vsftpd lftp -y   ##lftp ...

  6. DFS+BFS(POJ3083)

    题目链接:http://poj.org/problem?id=3083 解题报告:这个题目,搜最短路,没有什么问题.优先走左边,走右边,有很多说法,思路大概都相同,都是记录当前朝向,根据数学公式(i+ ...

  7. flex布局-常用布局

    在使用flex布局,老是需要去查资料,很多常用的,知道大概,可还是需要去过一遍,这里记录一下几个常用的flex布局 一个div,内容垂直居中 html <div className='topHe ...

  8. 2018.7.19 . php复习

    PHP程序设计 1.请写出HTML标记meta的完整英文单词:metadata 2.相当于http文件头作用(向浏览器传回正确和精确地显示网页内容的消息)的meta标记的属性是http-equiv 3 ...

  9. 检测pycaffe安装好没

    进入python然后import caffe,如果没报错就表示安装好了

  10. tcp 的编程例子

    https://www.cnblogs.com/ylllove/p/6852125.html