[Math Review] Statistics Basic: Sampling Distribution
Inferential Statistics
Generalizing from a sample to a population that involves determining how far sample statistics are likely to vary from each other and from the population parameter.
Sampling Distribution
The sampling distribution of a statistic is the distribution of that statistic, considered as a random variable, when derived from a random sample of size .
- Every statistic has a sampling distribution.
- There is a sampling distribution for various sample sizes.
Two Conceptualization of Sampling Distribution
- The distribution of the statistic for all possible samples from the same population of a given sample size.
- Relative frequency distribution: Consider a given size of observations are sampled and the statistic is computed and recorded. Then the process is repeated again and again. After thousands of samples are taken and the statistic computed for each, a relative frequency distribution is drawn.
Standard Error
Sampling Distribution of the Mean
Mean

Variance

The larger the sample size, the smaller the variance of the sampling distribution of the mean.
Standard Error

Central Limit Theorem
Given a population with a finite mean μ and a finite non-zero variance σ2, the sampling distribution of the mean approaches a normal distribution with a mean of μ and a variance of σ2/N as N, the sample size, increases.
[Math Review] Statistics Basic: Sampling Distribution的更多相关文章
- [Math Review] Statistics Basic: Estimation
Two Types of Estimation One of the major applications of statistics is estimating population paramet ...
- [Math Review] Statistics Basics: Main Concepts in Hypothesis Testing
Case Study The case study Physicians' Reactions sought to determine whether physicians spend less ti ...
- Statistics : Data Distribution
1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...
- Sampling Distribution of the Sample Mean|Central Limit Theorem
7.3 The Sampling Distribution of the Sample Mean population:1000:Scale are normally distributed with ...
- [Math Review] Linear Algebra for Singular Value Decomposition (SVD)
Matrix and Determinant Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn Determinan ...
- [Math] From Prior to Posterior distribution
贝叶斯统计推断 后验分布与充分性 无信息先验下的后验分布 共轭先验(conjugacy)下的后验分布 其中,正态分布的共轭先验推导过程,典型且重要. (1) 当方差已知时,均值(prior: 高斯分布 ...
- Statistical Methods for Machine Learning
机器学习中的统计学方法. 从机器学习的核心视角来看,优化(optimization)和统计(statistics)是其最最重要的两项支撑技术.统计的方法可以用来机器学习,比如:聚类.贝叶斯等等,当然机 ...
- Gibbs sampling
In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...
- Sampling Distributions and Central Limit Theorem in R(转)
The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...
随机推荐
- oschina添加ssh公钥一记
生成SSH公钥 --------------------------------------------------------- 打开Windows Shell 或 GIT Bash ssh-key ...
- redhat 安装python3
一.首先,官网下载python3的所需版本. wget https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz 想下载到那个文件夹下就先进入到 ...
- 【转载】全面解析Unity3D自动生成的脚本工程文件
我们在Unity3D开发的时候,经常会看到它会产生不少固定命名工程文件,诸如: Assembly-CSharp-vs.csproj Assembly-CSharp-firstpass-vs.csp ...
- php连接数据库增删改查----多条件查询
关于查询,可以直接写在主页面上 来进行查询 首先,先建立一个表单 <form method="post" action="crud.php"> &l ...
- HDU 4747 Mex ( 线段树好题 + 思路 )
参考:http://www.cnblogs.com/oyking/p/3323306.html 相当不错的思路,膜拜之~ 个人理解改日补充. #include <cstdio> #incl ...
- python 常见的错误类型 和 继承关系
BaseException +-- SystemExit #系统结束 +-- KeyboardInterrupt #键盘中断 ctrl+D +-- GeneratorExit #主动结束 +-- Ex ...
- Struts2 学习笔记
1)Strust2是以WebWork为核心,采用拦截器的机制对用户请求进行处理. 2)Struts2框架结构: 3)简单来看整个Struts2的处理过程可以简单的理解为 用户的请求发送给对应的Acti ...
- LeetCode -- Sum Root to Leaf NNumbers
Related Links: Path Sum: http://www.cnblogs.com/little-YTMM/p/4529982.html Path Sum II: http://www.c ...
- [bzoj3270] 博物馆 [期望+高斯消元]
题面 传送门 思路 本题的点数很少,只有20个 考虑用二元组$S=(u,v)$表示甲在$u$点,乙在$v$点的状态 那么可以用$f(S)$表示状态$S$出现的概率 不同的$f$之间的转移就是通过边 转 ...
- Spring bean 创建过程源码解析
在上一篇文件 Spring 中 bean 注册的源码解析 中分析了 Spring 中 bean 的注册过程,就是把配置文件中配置的 bean 的信息加载到内存中,以 BeanDefinition 对象 ...