原题

给出一颗有n个点的树,其中有M个点是拥挤的,请选出一条最多包含k个拥挤的点的路径使得经过的权值和最大。


正常树分治,每次处理路径,更新答案。

计算每棵子树的deep(本题以经过拥挤节点个数作为deep),然后记录mx[i]为当前为止经过i个拥挤节点所达到的最大价值,tmp[i]为当前所在树中经过i个拥挤节点所达到的最大价值,用于更新答案即可。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#define N 200010
using namespace std;
int ans,n,K,m,cnt,head[N],f[N];
vector < pair<int,int> > v;
struct hhh
{
int to,next,w;
}edge[2*N]; int read()
{
int ans=0,fu=1;
char j=getchar();
for (;j<'0' || j>'9';j=getchar()) if (j=='-') fu=-1;
for (;j>='0' && j<='9';j=getchar()) ans*=10,ans+=j-'0';
return ans*fu;
} void add(int u,int v,int w)
{
edge[cnt].to=v;edge[cnt].next=head[u];edge[cnt].w=w;head[u]=cnt++;
edge[cnt].to=u;edge[cnt].next=head[v];edge[cnt].w=w;head[v]=cnt++;
} void getroot(int x,int fa)
{
sze[x]=1;
son[x]=0;
for (int i=head[x];i;i=edge[i].next)
if (!vis[edge[i].to] && edge[i].to!=fa)
{
getroot(edge[i].to,x);
son[x]=max(son[x],sze[edge[i].to]);
sze[x]+=sze[edge[i].to];
}
son[x]=max(son[x],sum-sze[x]);
if (son[x]<son[rt]) rt=x;
} void getdis(int x,int fa)
{
deep_mx=max(deep_mx,deep[x]);
for (int i=head[x];i;i=edge[i].next)
if (!vis[edge[i].to] && edfe[i].to!=fa)
{
deep[edge[i].to]=deep[x]+color[edge[i].to];
dis[edge[i].to]=dis[x]+edge[i].w;
getdis(edge[i].to,x);
}
} void getmx(int x,int fa)
{
tmp[deep[x]]=max(tmp[deep[x]],dis[x]);
for (int i=head[x];i;i=edge[i].to)
if (!vis[edge[i].to] && edge[i].to!=fa)
getmx(edge[i].to,x);
} void solve(int x)
{
vis[x]=1;
v.clear();
for (int i=head[x];i;i=edge[i].next)
if (!vis[edge[i].to])
{
deep_mx=0;
deep[edge[i].to]=color[edge[i].to];
dis[edge[i].to]=edge[i].ww;
getdis(edge[i].to,x);
v.push_back(make_pair(deep_mx,edge[i].to));
}
sort(v.begin(),v.end());
int s=v.size();
for (int i=0;i<s;i++)
{
getmx(st[i].second,x);
int now=0;
if (i!=0)
for (int j=v[i].first;j>=0;j--)
{
while (now+j<K && now<st[i-1].first)
now++,mx[now]=max(mx[now],mx[now-1]);
if (now+j<=K) ans=max(mx[now]+tmp[j]);
}
if (i!=s-1)
for (int j=0;j<=v[i].first;j++)
mx[j]=max(mx[j],tmp[j]),tmp[j]=0;
else
for (int j=0;j<=v[i].first;j++)
{
if (j<=K) ans=max(ans,max(tmp[j],mx[j]));
tmp[j]=mx[j]=0;
}
}
} int main()
{
n=read();
K=read();
m=read();
for (int i=1;i<=m;i++)
{
int x=read();
color[x]=1;
}
for (int i=1,u,v,w;i<n;i++)
{
u=read();v=read();w=read();
add(u,v,w);
}
sum=n;
f[0]=n;
getroot(1,0);
solve(rt);
printf("%d",ans);
return 0;
}

[spoj] FTOUR2 FREE TOUR II || 树分治的更多相关文章

  1. SPOJ 1825 Free tour II 树分治

    题意: 给出一颗边带权的数,树上的点有黑色和白色.求一条长度最大且黑色节点不超过k个的最长路径,输出最长的长度. 分析: 说一下题目的坑点: 定义递归函数的前面要加inline,否则会RE.不知道这是 ...

  2. SPOJ FTOUR2 - Free tour II

    Description 有些黑点,问你选择不超过 \(k\) 个黑点的路径,路径权值最大是多少. Sol 点分治. 这是qzc的论文题,不过我感觉他的翻译好强啊...我还是选择了自己去看题目... 点 ...

  3. SP1825 FTOUR2 - Free tour II 点分治+启发式合并+未调完

    题意翻译 给定一棵n个点的树,树上有m个黑点,求出一条路径,使得这条路径经过的黑点数小于等于k,且路径长度最大 Code: #include <bits/stdc++.h> using n ...

  4. SPOJ 1825 Free tour II (树的点分治)

    题目链接 Free tour II 题意:有$N$个顶点的树,节点间有权值, 节点分为黑点和白点. 找一条最长路径使得 路径上黑点数量不超过K个 这是树的点分治比较基本的题,涉及树上启发式合并……仰望 ...

  5. SPOJ1825 FTOUR2 - Free tour II

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. SPOJ:Free tour II (树分治+启发式合并)

    After the success of 2nd anniversary (take a look at problem FTOUR for more details), this 3rd year, ...

  7. spoj 1825 Free tour II

    http://www.spoj.com/problems/FTOUR2/ After the success of 2nd anniversary (take a look at problem FT ...

  8. FTOUR2 - Free tour II

    传送门 题目翻译的很清楚……似乎点分治的题题目描述都非常简洁. 还是那个操作,一条路径要么全部在一棵子树中,要么经过当前的重心,所以考虑点分治. 首先dfs求出重心的每一棵子树中,有i个黑点的最长路径 ...

  9. SP1825 【FTOUR2 - Free tour II】

    # \(SP1825\) 看到没有人用老师的办法,于是自己写一下思路 思路第一步:排除旧方法 首先这道题和\(4178\)不一样,因为那道题是计数,而这道题是求最值,最值有个坏处,就是对于来自相同子树 ...

随机推荐

  1. 1801: [Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2520  Solved: 1524[Submit][Status][Discuss] Descripti ...

  2. 微信 php 获取token 第二次失败解决办法

    第一次成功了,第二次总是失败,很简单,session问题 clearstatcache(); $_SESSION = ''; $_COOKIE = ''; //获得参数 signature nonce ...

  3. Apache POI 工具类 [ PoiUtil ]

    pom.xml <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxml ...

  4. 命名空间“Microsoft.Office”中不存在类型或命名空间名称“Interop”(是否缺少程序集引用?

    在一个web项目中需要导出word打印,引用Microsoft.Office.Interop.Word后,在pages里使用正常,在app_code里新建类引用就报错. Report.cs里using ...

  5. PHP递归操作

    对于php的递归操作解释说明,递归基本上是学习每种语言都要会的最基本的操作.来吧,下面是我闲的时候随便写的一个对数组进行遍历操作的一个递归函数. 原理很简单,递归就是在一个函数里面调用自身的一种机制. ...

  6. Charles Dickens【查尔斯·狄更斯】

    Charles Dickens In 1812, the year Charles Dickens was born, there were 66 novels published in Britai ...

  7. C语言实例解析精粹学习笔记——26

    实例26:阿拉伯数字转换为罗马数字,将一个整数n(1~9999)转换为罗马数字,其中数字和罗马数字的对应关系如下: 原书中的开发环境很老,我也没有花心思去研究.自己在codeblocks中进行开发的, ...

  8. QWidget 自带的最大化,最小化,关闭按键的设置

    使用函数 setWindowFlags 参数: CustomizeWindowHint 去掉窗口所有自带按钮 Qt::CustomizeWindowHint | Qt::WindowCloseButt ...

  9. POJ 3581 三段字符串(后缀数组)

    Sequence Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7923   Accepted: 1801 Case Tim ...

  10. POJ:2429-GCD & LCM Inverse(素数判断神题)(Millar-Rabin素性判断和Pollard-rho因子分解)

    原题链接:http://poj.org/problem?id=2429 GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K To ...