看了一下题解里的zkw线段树,感觉讲的不是很清楚啊(可能有清楚的但是我没翻到,望大佬勿怪)。

决定自己写一篇。。。希望大家能看明白。。。


zkw线段树是一种优秀的非递归线段树,速度比普通线段树快两道三倍,同时代码量不大。

(当然,存在很多线段树可做zkw不可做的题)

zkw线段树的核心思路就是先修改叶子,然后从底向上沿着路径修改。

如果画一张图出来整个过程有点像逐渐两条交回在根节点的链。


注意:对于需要维护的区间$[1,n]$,zkw线段树维护的实际上是$[0,n+1]$。


建树

 inline void build(ll n){
bit=;
while(bit<n+)bit<<=;
for(ll i=;i<=n;++i)tree[bit+i]=a[i];
for(ll i=bit-;i>=;--i)tree[i]=tree[i<<]+tree[i<<|],tag[i]=;
}

bit表示的底层的大小,我们需要先预处理出这个全局变量。

然后我们就可以先把叶子的值全部读入。

读入之后就顺着叶子向上走,更新上面的节点。

这一段代码没有什么复杂的地方。


更新

 inline void update(ll l,ll r,ll val){
ll s,t,ln=,rn=,x=;
for(s=bit+l-,t=bit+r+;s^t^;s>>=,t>>=,x<<=){
tree[s]+=val*ln,tree[t]+=val*rn;
if(~s&)tag[s^]+=val,tree[s^]+=val*x,ln+=x;
if(t&)tag[t^]+=val,tree[t^]+=val*x,rn+=x;
}
for(;s;s>>=,t>>=)tree[s]+=val*ln,tree[t]+=val*rn;
}

更新操作稍微比建树复杂一点。

s和t就是先前提到的两条链,当然准确地说,它们的轨迹才是那两条链。

ln,rn表示的是当前节点的长度(也就是s,t的长度)。

x表示的是s和t中间这一坨的长度。

然后也是一样的自底向上,每一次先更新两边,然后再判断该更新左儿子还是右儿子。


查询

 inline ll query(ll l,ll r){
ll s,t,ln=,rn=,x=,ans=;
for(s=bit+l-,t=bit+r+;s^t^;s>>=,t>>=,x<<=){
if(tag[s])ans+=tag[s]*ln;
if(tag[t])ans+=tag[t]*rn;
if(~s&)ans+=tree[s^],ln+=x;
if(t&)ans+=tree[t^],rn+=x;
}
for(;s;s>>=,t>>=)ans+=tag[s]*ln,ans+=tag[t]*rn;
return ans;
}

查询操作和更新一样,没什么好讲的。


不开O2跑了511ms,比普通线段树的760+ms快很多(可能是我写丑了)

完整代码如下:

 #include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const ll N=;
ll n,m;
ll op,x,y,z;
ll a[N];
ll bit;
ll tree[N<<],tag[N<<];
inline void build(ll n){
bit=;
while(bit<n+)bit<<=;
for(ll i=;i<=n;++i)tree[bit+i]=a[i];
for(ll i=bit-;i>=;--i)tree[i]=tree[i<<]+tree[i<<|],tag[i]=;
}
inline void update(ll l,ll r,ll val){
ll s,t,ln=,rn=,x=;
for(s=bit+l-,t=bit+r+;s^t^;s>>=,t>>=,x<<=){
tree[s]+=val*ln,tree[t]+=val*rn;
if(~s&)tag[s^]+=val,tree[s^]+=val*x,ln+=x;
if(t&)tag[t^]+=val,tree[t^]+=val*x,rn+=x;
}
for(;s;s>>=,t>>=)tree[s]+=val*ln,tree[t]+=val*rn;
}
inline ll query(ll l,ll r){
ll s,t,ln=,rn=,x=,ans=;
for(s=bit+l-,t=bit+r+;s^t^;s>>=,t>>=,x<<=){
if(tag[s])ans+=tag[s]*ln;
if(tag[t])ans+=tag[t]*rn;
if(~s&)ans+=tree[s^],ln+=x;
if(t&)ans+=tree[t^],rn+=x;
}
for(;s;s>>=,t>>=)ans+=tag[s]*ln,ans+=tag[t]*rn;
return ans;
}
int main(){
scanf("%lld%lld",&n,&m);
for(ll i=;i<=n;++i)scanf("%lld",&a[i]);
build(n);
while(m--){
scanf("%lld%lld%lld",&op,&x,&y);
if(op==)scanf("%lld",&z),update(x,y,z);
else cout<<query(x,y)<<endl;
}
}

题解 P3372 【【模板】线段树1 】的更多相关文章

  1. hdu 1754 I Hate It (模板线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    M ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. 【线段树】【P3372】模板-线段树

    百度百科 Definition&Solution 线段树是一种log级别的树形结构,可以处理区间修改以及区间查询问题.期望情况下,复杂度为O(nlogn). 核心思想见百度百科,线段树即将每个 ...

  4. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  5. [NOIP10.6模拟赛]2.equation题解--DFS序+线段树

    题目链接: 咕 闲扯: 终于在集训中敲出正解(虽然与正解不完全相同),开心QAQ 首先比较巧,这题是\(Ebola\)出的一场模拟赛的一道题的树上强化版,当时还口胡出了那题的题解 然而考场上只得了86 ...

  6. 算法模板——线段树6(二维线段树:区域加法+区域求和)(求助phile)

    实现功能——对于一个N×M的方格,1:输入一个区域,将此区域全部值作加法:2:输入一个区域,求此区域全部值的和 其实和一维线段树同理,只是不知道为什么速度比想象的慢那么多,求解释...@acphile ...

  7. 【题解】Journeys(线段树优化连边)

    [#3073. Pa2011]Journeys (线段树优化连边) 这张图太直观了,直接讲透了线段树优化连边的原理和正确性. 考虑建立两颗线段树,一颗是外向树,一颗是内向树,相当于网络流建模一样,我们 ...

  8. Gorgeous Sequence 题解 (小清新线段树)

    这道题被学长称为“科幻题” 题面 事实上,并不是做法科幻,而是“为什么能这么做?”的解释非常科幻 换句话说,复杂度分析灰常诡异以至于吉如一大佬当场吃书 线段树维护的量:区间和sum,区间最大值max1 ...

  9. 洛谷题解P4314CPU监控--线段树

    题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...

  10. [NOI2016]区间 题解(决策单调性+线段树优化)

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1593  Solved: 869[Submit][Status][ ...

随机推荐

  1. jqGrid系列知识

    1.获取选中到行的ID var rowKey = jQuery(grid_selector).getGridParam("selrow"); 2.获取选中行除ID之外的数据 var ...

  2. 【原创】关于java中的lock

    看了下java中高性能锁Lock,其中有如下: ReentrantLock:独占锁,类似于synchronized,不过锁的粒度更小 ReadWriteLock(ReentrantReadWriteL ...

  3. org.apache.ibatis.binding.BindingException: Parameter ‘brOrderNo’ not found. Available parameters ar

    最近使用 mybatis 写项目的时候遇到报错:org.apache.ibatis.binding.BindingException: Parameter 'brOrderNo' not found. ...

  4. str 数据类型的用法

    ---------------------------------------------------------------------------------------------------- ...

  5. Ajax通过script src特性加载跨域文件 jsonp

    <!DOCTYPE html><html><head> <meta charset="UTF-8"> <title>Do ...

  6. ajaxFileUpload 返回的数据报错

    $.ajaxFileUpload({ url : '/updateMallGoods', data : { "goodsName":goodsName, "proDesc ...

  7. 用shell写一个简单DHCP配置脚本

    轩轩写的这个小脚本,主要是可以进行对dhcp服务的安装.简单配置.开启.关闭/查看状态等情况 使用呢非常简单,按照步骤进行准确的设置就可以啦 #!/bin/bashyum -y install dhc ...

  8. MySQL数据类型及后面小括号的意义

    1,数值类型 1.1数值类型的种类 标准 SQL 中的数值类型,包括严格数值类型(INTEGER.SMALLINT.DECIMAL.NUMERIC),以及近似数值数据类型(FLOAT.REAL.DOU ...

  9. 一 Storm 基础

     1  Storm 分布式计算结构称为 Topology (拓扑)         Topology 由 stream(数据流).spout(数据流的生成者).bolt(运算)组成.          ...

  10. Linux在中国的没落

    6月23日,Linux kernel 4.1(LTS)公布.在国际自由软件世界引起热烈反响. 反观我们国内,官方机构没有不论什么动静:在民间,Linux激情已经消失.与十几年前相比.Linux在国内已 ...