Eddy's research I


Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6664    Accepted Submission(s): 3997

Problem Description

Eddy's interest is very extensive, recently he is interested in prime number. Eddy discover the all number owned can be divided into the multiply of prime number, but he can't write program, so Eddy has to ask intelligent you to help him, he asks you to write
a program which can do the number to divided into the multiply of prime number factor .



Input

The input will contain a number 1 < x<= 65535 per line representing the number of elements of the set.

 

Output

You have to print a line in the output for each entry with the answer to the previous question.

 

Sample Input

11

9412

 

Sample Output

11

2*2*13*181

 

Author

eddy

题目大意:随意一个数x,都能够被分解为几个素数(能够同样)相乘的形式。如今给你一个数x,

把它分解为几个素数相乘的形式。

思路:这里x的规模最大为65535。所以用简单的素性推断方法直接暴力也能够过。网上贴的

代码大多简单,这里贴一个用【Miller Rabin素数測试】+【Pollar Rho整数分解】来做的代码

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define MAX_VAL (pow(2.0,60))
//miller_rabbin素性測试
__int64 mod_mul(__int64 x,__int64 y,__int64 mo)
{
__int64 t,T,a,b,c,d,e,f,g,h,v,ans;
T = (__int64)(sqrt(double(mo)+0.5)); t = T*T - mo;
a = x / T;
b = x % T;
c = y / T;
d = y % T;
e = a*c / T;
f = a*c % T;
v = ((a*d+b*c)%mo + e*t) % mo;
g = v / T;
h = v % T;
ans = (((f+g)*t%mo + b*d)% mo + h*T)%mo;
while(ans < 0)
ans += mo;
return ans;
} __int64 mod_exp(__int64 num,__int64 t,__int64 mo)
{
__int64 ret = 1, temp = num % mo;
for(; t; t >>=1,temp=mod_mul(temp,temp,mo))
if(t & 1)
ret = mod_mul(ret,temp,mo); return ret;
} bool miller_rabbin(__int64 n)
{
if(n == 2)
return true;
if(n < 2 || !(n&1))
return false;
int t = 0;
__int64 a,x,y,u = n-1;
while((u & 1) == 0)
{
t++;
u >>= 1;
}
for(int i = 0; i < 50; i++)
{
a = rand() % (n-1)+1;
x = mod_exp(a,u,n);
for(int j = 0; j < t; j++)
{
y = mod_mul(x,x,n);
if(y == 1 && x != 1 && x != n-1)
return false;
x = y;
}
if(x != 1)
return false;
}
return true;
}
//PollarRho大整数因子分解
__int64 minFactor;
__int64 gcd(__int64 a,__int64 b)
{
if(b == 0)
return a;
return gcd(b, a % b);
} __int64 PollarRho(__int64 n, int c)
{
int i = 1;
srand(time(NULL));
__int64 x = rand() % n;
__int64 y = x;
int k = 2;
while(true)
{
i++;
x = (mod_exp(x,2,n) + c) % n;
__int64 d = gcd(y-x,n);
if(1 < d && d < n)
return d;
if(y == x)
return n;
if(i == k)
{
y = x;
k *= 2;
}
}
}
__int64 ans[1100],cnt;
void getSmallest(__int64 n, int c)
{
if(n == 1)
return;
if(miller_rabbin(n))
{
ans[cnt++] = n;
return;
}
__int64 val = n;
while(val == n)
val = PollarRho(n,c--);
getSmallest(val,c);
getSmallest(n/val,c);
} int main()
{
__int64 X;
while(~scanf("%I64d",&X))
{
cnt = 0;
getSmallest(X,200);
sort(ans, ans+cnt);
for(int i = 0; i < cnt; i++)
{
if(i!=0)
printf("*%I64d",ans[i]);
else
printf("%I64d",ans[i]);
}
printf("\n");
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  3. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  4. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  5. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  6. HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...

  7. Miller Rabbin素数测试

    步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d% ...

  8. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  9. POJ1811- Prime Test(Miller–Rabin+Pollard's rho)

    题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...

随机推荐

  1. php杂项函数

    php杂项函数 一.总结 看着函说作用 函数 描述 PHP     constant() 返回一个常量的值. 4 define() 定义一个常量. 3 defined() 检查某常量是否存在. 3 d ...

  2. Android NetworkOnMainThreadException异常

    看名字就应该知道,是网络请求在MainThread中产生的异常 先来看一下官网的解释: Class Overview The exception that is thrown when an appl ...

  3. UVA 10970 - Big Chocolate 洪水@。@

    先横着切m-1刀,矩形巧克力就变成了1*n (有m个)然后每个都要切n-1下,所以有 m*(n-1) +(m-1)= n*m-1 #include<cstdio> int main() { ...

  4. Ubuntu 16.04/16.10安装 KDE Plasma

    KDE目前的最新版本是Plasma 5.7(2016-10).Ubuntu默认的桌面环境是Unity,下面记录怎么在Ubuntu 16.04/16.10上安装KDE. Ubuntu 16.04/16. ...

  5. 使用ionic3快速开发webapp(一)

    Ionic可以让我们使用web技术快速构建接近原生体验的跨平台移动应用. 一.安装ionic 1.需要先安装 Node.js(版本8.x之上): 2.安装cordova 和 ionic: $ npm ...

  6. ios开发核心动画五:转场动画

    #import "ViewController.h" @interface ViewController () @property (weak, nonatomic) IBOutl ...

  7. centos7 开启端口防火墙配置(如开启3306或者80端口)

    转载自https://blog.csdn.net/codepen/article/details/52738906 https://www.cnblogs.com/hantianwei/p/57362 ...

  8. java并发api总结

    开发十年,就只剩下这套架构体系了! >>>   1.java.util.concurrent包 1.1 Executors Executor:接口,仅有一个方法为execute(Ru ...

  9. Android中的动画具体解释系列【3】——自己定义动画研究

    在上一篇中我们使用到了位移动画TranslateAnimation,以下我们先来看看TranslateAnimation是怎样实现Animation中的抽象方法的: /* * Copyright (C ...

  10. Android 使用Canvas在图片上绘制文字

    一个小应用,在图片上绘制文字,以下是绘制文字的方法,并且能够实现自动换行,字体自动适配屏幕大小 private void drawNewBitmap(ImageView imageView, Stri ...