time limit per test1 second

memory limit per test256 megabytes

inputstandard input

outputstandard output

After Vitaly was expelled from the university, he became interested in the graph theory.

Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.

Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.

Two ways to add edges to the graph are considered equal if they have the same sets of added edges.

Since Vitaly does not study at the university, he asked you to help him with this task.

Input

The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.

Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.

It is guaranteed that the given graph doesn’t contain any loops and parallel edges. The graph isn’t necessarily connected.

Output

Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.

Examples

input

4 4

1 2

1 3

4 2

4 3

output

1 2

input

3 3

1 2

2 3

3 1

output

0 1

input

3 0

output

3 1

Note

The simple cycle is a cycle that doesn’t contain any vertex twice.

【题目链接】:http://codeforces.com/contest/557/problem/D

【题解】



要存在一个奇数环。

则最多就添加3条边(3条边一定能构成一个环!)。

1.看看整张图变成了几个连通块,如果每个连通块里面的点的个数都为1,则添加边数为3,方案数为C(n,3)=n*(n-1)*(n-2)/6,这个时候对应的情况是边数m=0;->”3 C(N,3)”

2.每个连通块里面的点的个数的最大值为2;则连通块里面点的个数为2的情况就对应这个连通块里面只有一条边,而一条边由两个点构成,这条边上的两个点分别与其余n-2个点构成n-2个环(都是3个点的环),边的个数m就对应了连通块里面点的个数为2的情况,则方案为m*(n-2);->”2 m*(n-2)”

下面这种情况不是奇环(而是偶环),所以”2对2的情况可以排除”;



3.除了以上两种情况外;

如果在某个连通块里面不能进行二分图染色->则存在奇环。直接输出”0 1”;



( 有奇环就不能完成二分图染色);

如果都能进行二分图染色;

则记录每个连通块里面白点(0)和黑点(1)的个数;

设为cnt[0]和cnt[1];

则每有一个联通块;

答案递增C(cnt[0],2)+C(cnt[1],2);



可以看到每两个0之间连一条边都能构成一个奇数环;

很有趣的性质.



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x)
#define pri(x) printf("%d",x)
#define prl(x) printf("%I64d",x) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int MAXN = 1e5+10;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0); int n,m;
int f[MAXN],num[MAXN],cnt[2];
int color[MAXN];
vector <int> g[MAXN];
queue <int> dl; int ff(int x)
{
if (f[x]==x) return x;
else
f[x] = ff(f[x]);
return f[x];
} int main()
{
//freopen("F:\\rush.txt","r",stdin);
memset(color,255,sizeof color);
rei(n);rei(m);
rep1(i,1,n)
f[i] = i,num[i] = 1;
rep1(i,1,m)
{
int x,y;
rei(x);rei(y);
g[x].pb(y);
g[y].pb(x);
int r1 = ff(x),r2 = ff(y);
if (r1!=r2)
{
f[r1]=r2;
num[r2]+=num[r1];
}
}
int ma = 1;
LL ans = 0;
rep1(i,1,n)
{
int r = ff(i);
ma = max(ma,num[r]);
}
if (ma == 1)
{
printf("3 %I64d\n",1LL*n*(n-1)*(n-2)/6);
return 0;
}
else
if (ma==2)
{
printf("2 %I64d\n",1LL*(n-2)*m);
return 0;
}
else
{
rep1(i,1,n)
if (color[i]==-1)
{
memset(cnt,0,sizeof cnt);
color[i] = 0;
cnt[0] = 1;
dl.push(i);
bool ok = true;
while (!dl.empty())
{
int x = dl.front();
dl.pop();
int len = g[x].size();
rep1(j,0,len-1)
{
int y = g[x][j];
if (y==x) continue;
if (color[y]==-1)
{
color[y] = 1-color[x];
cnt[color[y]]++;
dl.push(y);
}
else
if (color[y]==color[x])
{
ok = false;
break;
}
}
if (!ok) break;
}
if (!ok)
{
printf("0 1\n");
return 0;
}
if (cnt[0]>=2)
ans+=1LL*cnt[0]*(cnt[0]-1)/2;
if (cnt[1]>=2)
ans+=1LL*cnt[1]*(cnt[1]-1)/2;
}
}
cout <<"1 "<< ans << endl;
return 0;
}

【34.57%】【codeforces 557D】Vitaly and Cycle的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图

    D. Vitaly and Cycle       time limit per test 1 second memory limit per test 256 megabytes input sta ...

  3. 【57.97%】【codeforces Round #380A】Interview with Oleg

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  4. 【24.34%】【codeforces 560D】Equivalent Strings

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  5. 【34.88%】【codeforces 569C】Primes or Palindromes?

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  6. 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  7. 【codeforces 793D】Presents in Bankopolis

    [题目链接]:http://codeforces.com/contest/793/problem/D [题意] 给你n个点, 这n个点 从左到右1..n依序排; 然后给你m条有向边; 然后让你从中选出 ...

  8. 【codeforces 799D】Field expansion

    [题目链接]:http://codeforces.com/contest/799/problem/D [题意] 给你长方形的两条边h,w; 你每次可以从n个数字中选出一个数字x; 然后把h或w乘上x; ...

  9. 【codeforces 750C】New Year and Rating(做法2)

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. [TypeScript] Model Alternatives with Discriminated Union Types in TypeScript

    TypeScript’s discriminated union types (aka tagged union types) allow you to model a finite set of a ...

  2. Hibernate中编程式事物的简单使用

    一,openSessioin方式开启或者关闭事物 Session session = null; try { session = HibernateUtils.getSession(); sessio ...

  3. tab标签页(选项卡)插件

    <body style="margin: 50px;"> <ul id="nav" class="nav nav-tabs" ...

  4. 基于Linux系统WINE虚拟机技术的研究

    650) this.width=650;" onclick="window.open("http://blog.51cto.com/viewpic.php?refimg= ...

  5. Vue 打包后报错 Uncaught TypeError: Cannot redefine property: $router

    原因:就如报错提示所描述的,不能重新定义$router,说明是重复定了$router.通常是因为在项目中安装了vue-router的依赖并且用Vue.use()使用了vue-router,还在inde ...

  6. 解读OpenRTB(实时竞价)生态系统

    最近3年,广告实时竞价(RealTimeBidding)模式逐渐流行起来. 2012年大致了解过,最近一段时间,重新温习下. 半壁江山 生态系统总的来说分为2个部分,卖方和买方. 卖方:媒体,即拥有广 ...

  7. 【2017"百度之星"程序设计大赛 - 初赛(A)】今夕何夕

    [链接]http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=775&pid=1005 [题意] 在这里写题意 [题 ...

  8. @property 和@synthesize

    xcode4.4之后,@property包括了@synthesize的功能. 这是编译器的升级. @property有几个作用:1)默认生成一个私有成员变量,并有一个带下划线的别名如_age   2) ...

  9. IOS系统不兼容position: fixed;属性的解决方案

    position: fixed;属性在IOS系统手机上会有很明显的抖动,解决方式: 只需要在中间部分外层div添加css样式position:fixed;top:50px; bottom:50px;o ...

  10. vue.js的基础与语法

    Vue的实例 创建第一个实例: {{}} 被称之为插值表达式.可以用来进行文本插值. <!DOCTYPE html> <html lang="en"> &l ...