pandas 学习(四)—— 数据处理(清洗)、缺失值的处理
创建 DataFrame:
df = pd.DataFrame(np.random.randint(0, 10, (2, 4)), columns=list('ABCD'))
0. 为 data frame 添加新的属性列
>> df['total'] = df['A'] + df['B'] + df['C'] + df['D']
# 等价于 df['total'] = df.A + df.B + df.C + df.D
1. 数据类型
- df.values ⇒ 返回的是 numpy 下的多维数组;
- df.column_name.values ⇒ 返回的也是 numpy 下的数组类型;
- df.dtypes:返回的是各个属性列的类型;
- df.select_dtypes([np.object])
- df.select_dypes([bool])
2. 简单数据统计
- 统计某一属性可能的取值:df.column_name.unique()
- 统计出现的次数:df.column_name.value_counts()
- column_name 对应的是该 DataFrame 中某列的列名;
- 也即 pandas 下的 DataFrame 对象直接支持 点+列名的方式进行索引;
3. 缺失值的处理
- 所有缺失值字段填充为 0:
df.fillna(0),一定要十分注意的一点是,df.fillna() 操作默认(inplace=False)不是 inplace,也即不是对原始 data frame 直接操作修改的,而是创建一个副本,对副本进行修改;- df.fillna(0, inplace=True)
- df = df.fillna(0)
- 舍弃:
- 舍弃那些全行为 NaN 的行,以及全列为 NaN 的行:
- df.dropna(axis=[0, 1], how=’all’)
- 删除某些行和列:
- df.drop([], axis=1, inplace=True) ⇒ axis = 1,删除列;
- df.drop([], axis=0, inplace=True) ⇒ axis = 0,删除行;
- 舍弃那些全行为 NaN 的行,以及全列为 NaN 的行:
均值填充
age_mean = data.Age.mean() # age_mean = data['Age'].mean()
data.Age[data['Age'].isnull()] = age_mean # data['Age'] == data.Age 二者是等效的
pandas 学习(四)—— 数据处理(清洗)、缺失值的处理的更多相关文章
- pandas学习3(数据处理)
- pandas学习(四)--数据的归一化
欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...
- 【转】Pandas学习笔记(四)处理丢失值
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- Python pandas学习总结
本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写 ...
- Pandas学习(三)——NBA球员薪资分析
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...
- Pandas学习(一)——数据的导入
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...
- pandas 学习笔记【持续更新】
import numpy as np import pandas as pd import matplotlib.pyplot as plt df1 = pd.DataFrame(np.arange( ...
- python学习_数据处理编程实例(二)
在上一节python学习_数据处理编程实例(二)的基础上数据发生了变化,文件中除了学生的成绩外,新增了学生姓名和出生年月的信息,因此将要成变成:分别根据姓名输出每个学生的无重复的前三个最好成绩和出生年 ...
- Struts2框架学习(三) 数据处理
Struts2框架学习(三) 数据处理 Struts2框架框架使用OGNL语言和值栈技术实现数据的流转处理. 值栈就相当于一个容器,用来存放数据,而OGNL是一种快速查询数据的语言. 值栈:Value ...
- Pandas系列(三)-缺失值处理
内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np in ...
随机推荐
- css笔记(二)——几种经常使用的模式
文本垂直居中 对于行内元素,height会自己主动收缩到包裹住文本的高度,所以不存在这个问题. 可是对于block和inline-block等盒子元素.假设设置了height属性,则文本默认会在上方显 ...
- scroll- 滑动条风格调整
<item name="scrollbarFadeDuration">250</item> <item name="scrollbarDef ...
- golang sync.Cond
package main import ( "fmt" "sync" "time" ) func main() { wait := sync ...
- IIS进程回收 空闲时Net线程未运行
最近手上的项目,用的是asp.net mvc,后台有个线程在循环接收socket数据,本身在系统运行的时候访问页面没问题,但是发现没访问时,后台没有接收数据,后来知道了是IIS把线程回收了.解决方法如 ...
- node:json与csv互转
[单个文件的转化] 1.安装json2csv模块将json转成csv jsonToCSV.js var fs = require('fs'); const Json2csvParser = r ...
- 10. LCD驱动程序 ——框架分析
引言: 由LCD的硬件原理及操作(可参看韦哥博客:第017课 LCD原理详解及裸机程序分析) 我们知道只要LCD控制器的相关寄存器正确配置好,就可以在LCD面板上显示framebuffer中的内容. ...
- 可执行EXE在windows调用过程
举例图中, 一个C#编写的测试程序, 输出两句话分别 : Hello, GoodBye, 介绍其在windows上CLR的调用过程. 1.在执行Main方法之前, CLR会检测出Main的代码引用的所 ...
- 一个虐你千百遍的问题:“RPC好,还是RESTful好?”
看到知乎上有这样一个问题 WEB开发中,使用JSON-RPC好,还是RESTful API好? 还有其他优秀的推荐方案吗? -------------------------------------- ...
- SICP 习题 (2.10)解题总结: 区间除法中除于零的问题
SICP 习题 2.10 要求我们处理区间除法运算中除于零的问题. 题中讲到一个专业程序猿Ben Bitdiddle看了Alyssa的工作后提出了除于零的问题,大家留意一下这个叫Ben的人,后面会不断 ...
- 使用dotcloud免费ssh
使用dotcloud免费ssh https://www.dotcloud.com一个项目在线托管网站,注册后可以免费托管两个项目. 注册帐号,在ubuntu中执行下面命令,安装dotcloud环境 s ...