pandas 学习(四)—— 数据处理(清洗)、缺失值的处理
创建 DataFrame:
df = pd.DataFrame(np.random.randint(0, 10, (2, 4)), columns=list('ABCD'))
0. 为 data frame 添加新的属性列
>> df['total'] = df['A'] + df['B'] + df['C'] + df['D']
# 等价于 df['total'] = df.A + df.B + df.C + df.D
1. 数据类型
- df.values ⇒ 返回的是 numpy 下的多维数组;
- df.column_name.values ⇒ 返回的也是 numpy 下的数组类型;
- df.dtypes:返回的是各个属性列的类型;
- df.select_dtypes([np.object])
- df.select_dypes([bool])
2. 简单数据统计
- 统计某一属性可能的取值:df.column_name.unique()
- 统计出现的次数:df.column_name.value_counts()
- column_name 对应的是该 DataFrame 中某列的列名;
- 也即 pandas 下的 DataFrame 对象直接支持 点+列名的方式进行索引;
3. 缺失值的处理
- 所有缺失值字段填充为 0:
df.fillna(0),一定要十分注意的一点是,df.fillna() 操作默认(inplace=False)不是 inplace,也即不是对原始 data frame 直接操作修改的,而是创建一个副本,对副本进行修改;- df.fillna(0, inplace=True)
- df = df.fillna(0)
- 舍弃:
- 舍弃那些全行为 NaN 的行,以及全列为 NaN 的行:
- df.dropna(axis=[0, 1], how=’all’)
- 删除某些行和列:
- df.drop([], axis=1, inplace=True) ⇒ axis = 1,删除列;
- df.drop([], axis=0, inplace=True) ⇒ axis = 0,删除行;
- 舍弃那些全行为 NaN 的行,以及全列为 NaN 的行:
均值填充
age_mean = data.Age.mean() # age_mean = data['Age'].mean()
data.Age[data['Age'].isnull()] = age_mean # data['Age'] == data.Age 二者是等效的
pandas 学习(四)—— 数据处理(清洗)、缺失值的处理的更多相关文章
- pandas学习3(数据处理)
- pandas学习(四)--数据的归一化
欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...
- 【转】Pandas学习笔记(四)处理丢失值
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- Python pandas学习总结
本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写 ...
- Pandas学习(三)——NBA球员薪资分析
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...
- Pandas学习(一)——数据的导入
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...
- pandas 学习笔记【持续更新】
import numpy as np import pandas as pd import matplotlib.pyplot as plt df1 = pd.DataFrame(np.arange( ...
- python学习_数据处理编程实例(二)
在上一节python学习_数据处理编程实例(二)的基础上数据发生了变化,文件中除了学生的成绩外,新增了学生姓名和出生年月的信息,因此将要成变成:分别根据姓名输出每个学生的无重复的前三个最好成绩和出生年 ...
- Struts2框架学习(三) 数据处理
Struts2框架学习(三) 数据处理 Struts2框架框架使用OGNL语言和值栈技术实现数据的流转处理. 值栈就相当于一个容器,用来存放数据,而OGNL是一种快速查询数据的语言. 值栈:Value ...
- Pandas系列(三)-缺失值处理
内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np in ...
随机推荐
- elasticsearch java 客户端之Client简介
elasticsearch通过构造一个client对外提供了一套丰富的java调用接口.总体来说client分为两类cluster信息方面的client及数据(index)方面的client.这两个大 ...
- 可重入锁ReentrantLock--转载
突然被问到什么是可重入锁?脑袋里闪过了n中概念,最终没有找到,从网上学习一下. 原文地址:https://www.ibm.com/developerworks/cn/java/j-jtp10264/ ...
- Day4上午解题报告
预计分数:50 +0+0=50 实际分数:50+0+10=60 毒瘤出题人,T3不给暴力分 (*  ̄︿ ̄) T1 https://www.luogu.org/problem/show?pid=T155 ...
- c#中文字符串与byte数组互相转化
因为中文字符串一个字符占两个字节,所以不能用正常的方式与byte之间进行互相转化 中文字符串转成byte[] byte[] ping = Encoding.UTF8.GetBytes("你的 ...
- 最简单的实体手机测试移动端前端Vue Cli3搭建网站的方法
手机和PC同用一个路由的情况下,直接在手机的浏览器上输入Ip: 192.168.1.100:8080 就能看到了. 其中192.168.1.100是PC的IP.不同的自己改下就好. 就这么简单.啥都不 ...
- ACM 中JAVA的应用
原文地址:http://www.cppblog.com/vontroy/archive/2010/05/24/116233.html 先说一下Java对于ACM的一些优点吧: (1) 对于熟悉C/C+ ...
- 1.2 Use Cases中 Event Sourcing官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Event Sourcing 事件采集 Event sourcing is a st ...
- 00096_Properties类
1.Properties类介绍 (1)Properties 类表示了一个持久的属性集.Properties 可保存在流中或从流中加载.属性列表中每个键及其对应值都是一个字符串: (2)特点 Hasht ...
- [Ramda] Simple log function for debugging Compose function / Using R.tap for logging
const log = function(x){ console.log(x); return x; } const get = R.curry(function(prop, obj){ return ...
- cocos2d-x 3.x游戏开发学习笔记(1)--mac下配置cocos2d-x 3.x开发环境
打开用户文件夹下.bash_profile文件,配置环境 vim ~/.bash_profile //按键i,进行插入编辑(假设输错d进行删除一行) 环境配置过程例如以下: 1.首先配置下androi ...