pandas 学习(四)—— 数据处理(清洗)、缺失值的处理
创建 DataFrame:
df = pd.DataFrame(np.random.randint(0, 10, (2, 4)), columns=list('ABCD'))
0. 为 data frame 添加新的属性列
>> df['total'] = df['A'] + df['B'] + df['C'] + df['D']
# 等价于 df['total'] = df.A + df.B + df.C + df.D
1. 数据类型
- df.values ⇒ 返回的是 numpy 下的多维数组;
- df.column_name.values ⇒ 返回的也是 numpy 下的数组类型;
- df.dtypes:返回的是各个属性列的类型;
- df.select_dtypes([np.object])
- df.select_dypes([bool])
2. 简单数据统计
- 统计某一属性可能的取值:df.column_name.unique()
- 统计出现的次数:df.column_name.value_counts()
- column_name 对应的是该 DataFrame 中某列的列名;
- 也即 pandas 下的 DataFrame 对象直接支持 点+列名的方式进行索引;
3. 缺失值的处理
- 所有缺失值字段填充为 0:
df.fillna(0),一定要十分注意的一点是,df.fillna() 操作默认(inplace=False)不是 inplace,也即不是对原始 data frame 直接操作修改的,而是创建一个副本,对副本进行修改;- df.fillna(0, inplace=True)
- df = df.fillna(0)
- 舍弃:
- 舍弃那些全行为 NaN 的行,以及全列为 NaN 的行:
- df.dropna(axis=[0, 1], how=’all’)
- 删除某些行和列:
- df.drop([], axis=1, inplace=True) ⇒ axis = 1,删除列;
- df.drop([], axis=0, inplace=True) ⇒ axis = 0,删除行;
- 舍弃那些全行为 NaN 的行,以及全列为 NaN 的行:
均值填充
age_mean = data.Age.mean() # age_mean = data['Age'].mean()
data.Age[data['Age'].isnull()] = age_mean # data['Age'] == data.Age 二者是等效的
pandas 学习(四)—— 数据处理(清洗)、缺失值的处理的更多相关文章
- pandas学习3(数据处理)
- pandas学习(四)--数据的归一化
欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...
- 【转】Pandas学习笔记(四)处理丢失值
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- Python pandas学习总结
本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写 ...
- Pandas学习(三)——NBA球员薪资分析
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...
- Pandas学习(一)——数据的导入
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...
- pandas 学习笔记【持续更新】
import numpy as np import pandas as pd import matplotlib.pyplot as plt df1 = pd.DataFrame(np.arange( ...
- python学习_数据处理编程实例(二)
在上一节python学习_数据处理编程实例(二)的基础上数据发生了变化,文件中除了学生的成绩外,新增了学生姓名和出生年月的信息,因此将要成变成:分别根据姓名输出每个学生的无重复的前三个最好成绩和出生年 ...
- Struts2框架学习(三) 数据处理
Struts2框架学习(三) 数据处理 Struts2框架框架使用OGNL语言和值栈技术实现数据的流转处理. 值栈就相当于一个容器,用来存放数据,而OGNL是一种快速查询数据的语言. 值栈:Value ...
- Pandas系列(三)-缺失值处理
内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np in ...
随机推荐
- *android抓包工具——fiddler抓包分析api接口
本文地址:http://blog.csdn.net/u011733020 首先,写这个仅仅是为了学习.不是要做什么违法的事情,假设有问题,有关部门 请联系我,立刻删除. 不要查我水表. 正题:这里介绍 ...
- tokumx的安装和使用
Add the Tokutek package signing key. $ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-key ...
- Office Open XML导出大数据
Office Open XML导出大量数据到 Excel .NET使用Office Open XML导出大量数据到 Excel我相信很多人在做项目的都碰到过Excel数据导出的需求,我从最开始使用最原 ...
- 微信浏览器的html5页面显示配置等问题汇集 1,禁止微信浏览器分享页面链接 (定点更新)
公司新需求,要求从安卓IOS应用分享到微信的链接页面不允许二次转发,所以开始编程第一步,上网找资料... 网上大神就是多,不消两分钟,找到方案,很简单,上代码先: wx.config({ debug: ...
- 将二级目录下的文件合并成一个文件的Python小脚本
这个小程序的目的是将二级目录下的文件全部合并成一个文件(其实几级目录都可以,只要做少许改动) #coding:utf8 import sys, os def process(path): new_fi ...
- 免费的EmBitz可替代Keil MDK开发STM32、NXP项目
一.背景 由于使用之前开发STM32是基于Keil MDK编译环境开发的,由于该软件是收费的,想用个免费开源的软件来替代Keil,EmBitz编译器是免费的,可以完全替代开发.下载程序支持J-Link ...
- Vue+TypeScript学习
Vue CLI 内置了 TypeScript 工具支持.在 Vue 的下一个大版本 (3.x) 中也计划了相当多的 TypeScript 支持改进,包括内置的基于 class 的组件 API 和 TS ...
- 目标跟踪系列十一:Exploiting the Circulant Structure of Tracking-by-detection with Kernels代码思路
Tracking学习系列原创,转载标明出处: http://blog.csdn.net/ikerpeng/article/details/40144497 这篇文章非常赞啊!非常有必要将其好好的学习, ...
- ThinkPHP5.0---方法异常格式
public function test(){ try{ // 获取到ThinkPHP的内置异常时,直接向上抛出,交给ThinkPHP处理 }catch (\think\Exception\HttpR ...
- Java Web学习总结(12)——使用Session防止表单重复提交
在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用户可能会以为是自己没有提交表单,就会再点击提交按钮重复提交表单,我们在开发中必须防止表单重复提交. 一.表单重复提 ...