【CQOI2011】放棋子

  在一个n行m列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列。有多少种方法? 例如\(,n=m=3\),有两个白棋子和一个灰棋子,下面左边两种方法都是合法的,但右边两种都是非法的。

    

输出答案对\(10^9+9\)取模的结果。

我们设\(f_{i,j,k}\)表示前\(i\)种颜色的棋子,占了\(j\)行\(k\)列的方案数。

转移时,考虑第\(i\)种颜色占了\(j'\)行\(k'\)列的方案数为\(g_{i,j',k'}\)

\[\displaystyle
f_{i,j,k}=\sum f_{i-1,j-j',k-k'}\cdot g_{i,j',k'}\cdot \binom{n-j+j'}{j'}\cdot \binom{m-k+k'}{k'}
\]

考虑求\(g_{i,j',k'}\)。

我们求出最多占了\(j'\)行\(k'\)列的方案数为\(h_{i,j',k'}\)。\(h_{i,j',k'}=\binom{j'\cdot k'}{c_i}\)。\(c_{i}\)就是第\(i\)种颜色的棋子数量。然后容斥一下就好了。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 35
#define C 15 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} const ll mod=1e9+9;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
} int n,m,q;
int size[C];
ll f[N][N][C];
ll g[N][N];
ll fac[N*N],ifac[N*N];
ll c(int n,int m) {return fac[n]*ifac[m]%mod*ifac[n-m]%mod;} void pre(int now) {
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(i*j>=size[now]) g[i][j]=c(i*j,size[now]);
}
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
for(int q=1;q<=i;q++) {
for(int k=1;k<=j;k++) {
if(q==i&&k==j) continue ;
g[i][j]=(g[i][j]-g[q][k]*c(i,q)%mod*c(j,k)%mod+mod)%mod;
}
}
}
}
} int main() {
n=Get(),m=Get(),q=Get();
fac[0]=1;
for(int i=1;i<=n*m;i++) fac[i]=fac[i-1]*i%mod;
ifac[n*m]=ksm(fac[n*m],mod-2);
for(int i=n*m-1;i>=0;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
for(int i=1;i<=q;i++) size[i]=Get();
f[0][0][0]=1;
for(int i=1;i<=q;i++) {
memset(g,0,sizeof(g));
pre(i);
for(int j=0;j<=n;j++) {
for(int k=0;k<=m;k++) {
if(!f[j][k][i-1]) continue ;
for(int j2=j+1;j2<=n;j2++) {
for(int k2=k+1;k2<=m;k2++) {
if(!g[j2-j][k2-k]) continue ;
(f[j2][k2][i]+=f[j][k][i-1]*g[j2-j][k2-k]%mod*c(n-j,j2-j)%mod*c(m-k,k2-k))%=mod;
}
}
}
}
}
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
(ans+=f[i][j][q])%=mod;
cout<<ans;
return 0;
}

【CQOI2011】放棋子的更多相关文章

  1. BZOJ 3294: [Cqoi2011]放棋子

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 628  Solved: 238[Submit][Status] ...

  2. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

  3. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  4. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

  5. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  6. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

  7. P3158 [CQOI2011]放棋子(dp+组合数)

    P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...

  8. BZOJ3294: [Cqoi2011]放棋子

    Description   Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...

  9. [CQOI2011]放棋子--DP

    题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...

  10. BZOJ3294: [Cqoi2011]放棋子(计数Dp,组合数学)

    题目链接 解题思路: 发现一个性质,如果考虑一个合法的方案可以将行和列都压到一起,也就是说,在占用行数和列数一定的情况下,行列互换是不会影响答案的,那么考虑使用如下方程: $f[i][j][k]$为占 ...

随机推荐

  1. .NET MVC项目设置包含Areas中的页面为默认启动页

    利用vs创建一个MVC项目后,一般的默认启动页是根目录下-->Controllers-->HomeController-->Index这个方法对应的页面. 我先说下创建Areas的流 ...

  2. C# 插件热插拔

    所谓热插拔就是插件可以 在主程序不重新启动的情况直接更新插件, 网上有很多方案: https://www.cnblogs.com/happyframework/p/3405811.html 如下: 但 ...

  3. [PHP] PHP在CLI环境下的错误日志

    1.display_errors = Off;//控制php是否输出错误;在生产环境中输出会泄露敏感信息;建议记录错误而不是将它们发送到STDOUToff :不显示任何错误;stderr :向STDE ...

  4. C#设计模式之十七中介者模式(Mediator Pattern)【行为型】

    一.引言 今天我们开始讲“行为型”设计模式的第五个模式,该模式是[中介者模式],英文名称是:Mediator Pattern.还是老套路,先从名字上来看看.“中介者模式”我第一次看到这个名称,我的理解 ...

  5. JVM相关知识

    Java虚拟机学习分享最近主要在学习JVM相关知识,-知识主要来源<深入理解JAVA虚拟机>,深有感触,结合自己的理解,整理出一些经验,由于篇幅较长,就把链接帖出来,希望对大家有所帮助: ...

  6. MongoDB复合索引详解

    摘要: 对于MongoDB的多键查询,创建复合索引可以有效提高性能. 什么是复合索引? 复合索引,即Compound Index,指的是将多个键组合到一起创建索引,这样可以加速匹配多个键的查询.不妨通 ...

  7. 前端学习 之 Bootstrap(二)

    一.代码 内联代码:用<code>包裹,但是需要用<和>表示尖括号. 键盘输入:用<kbd>包裹表示键盘输入的内容. 多行代码:用<pre>包裹多行代码 ...

  8. leetcode-58.最后一个单词的长度

    leetcode-58.最后一个单词的长度 题意 给定一个仅包含大小写字母和空格 ' ' 的字符串,返回其最后一个单词的长度. 如果不存在最后一个单词,请返回 0 . 说明:一个单词是指由字母组成,但 ...

  9. 钉钉扫码登录web网站

    钉钉扫码登录网站 前言  由于本公司前后台分离,这里主要讲述后台的实现逻辑与过程,前端相关的一略而过.前端我们采用的是把二维码内嵌到我们的网页中. 流程如下: 1.登录钉钉后台创建一个企业应用 2.根 ...

  10. Django 2.0 URL新版配置介绍

    实例 先看一个例子: from django.urls import path from . import views urlpatterns = [ path('articles/2003/', v ...