【CQOI2011】放棋子
【CQOI2011】放棋子
在一个n行m列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列。有多少种方法? 例如\(,n=m=3\),有两个白棋子和一个灰棋子,下面左边两种方法都是合法的,但右边两种都是非法的。

输出答案对\(10^9+9\)取模的结果。
我们设\(f_{i,j,k}\)表示前\(i\)种颜色的棋子,占了\(j\)行\(k\)列的方案数。
转移时,考虑第\(i\)种颜色占了\(j'\)行\(k'\)列的方案数为\(g_{i,j',k'}\)
f_{i,j,k}=\sum f_{i-1,j-j',k-k'}\cdot g_{i,j',k'}\cdot \binom{n-j+j'}{j'}\cdot \binom{m-k+k'}{k'}
\]
考虑求\(g_{i,j',k'}\)。
我们求出最多占了\(j'\)行\(k'\)列的方案数为\(h_{i,j',k'}\)。\(h_{i,j',k'}=\binom{j'\cdot k'}{c_i}\)。\(c_{i}\)就是第\(i\)种颜色的棋子数量。然后容斥一下就好了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 35
#define C 15
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=1e9+9;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
int n,m,q;
int size[C];
ll f[N][N][C];
ll g[N][N];
ll fac[N*N],ifac[N*N];
ll c(int n,int m) {return fac[n]*ifac[m]%mod*ifac[n-m]%mod;}
void pre(int now) {
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(i*j>=size[now]) g[i][j]=c(i*j,size[now]);
}
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
for(int q=1;q<=i;q++) {
for(int k=1;k<=j;k++) {
if(q==i&&k==j) continue ;
g[i][j]=(g[i][j]-g[q][k]*c(i,q)%mod*c(j,k)%mod+mod)%mod;
}
}
}
}
}
int main() {
n=Get(),m=Get(),q=Get();
fac[0]=1;
for(int i=1;i<=n*m;i++) fac[i]=fac[i-1]*i%mod;
ifac[n*m]=ksm(fac[n*m],mod-2);
for(int i=n*m-1;i>=0;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
for(int i=1;i<=q;i++) size[i]=Get();
f[0][0][0]=1;
for(int i=1;i<=q;i++) {
memset(g,0,sizeof(g));
pre(i);
for(int j=0;j<=n;j++) {
for(int k=0;k<=m;k++) {
if(!f[j][k][i-1]) continue ;
for(int j2=j+1;j2<=n;j2++) {
for(int k2=k+1;k2<=m;k2++) {
if(!g[j2-j][k2-k]) continue ;
(f[j2][k2][i]+=f[j][k][i-1]*g[j2-j][k2-k]%mod*c(n-j,j2-j)%mod*c(m-k,k2-k))%=mod;
}
}
}
}
}
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
(ans+=f[i][j][q])%=mod;
cout<<ans;
return 0;
}
【CQOI2011】放棋子的更多相关文章
- BZOJ 3294: [Cqoi2011]放棋子
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 628 Solved: 238[Submit][Status] ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- [CQOI2011]放棋子 (DP,数论)
[CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
- P3158 [CQOI2011]放棋子(dp+组合数)
P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...
- BZOJ3294: [Cqoi2011]放棋子
Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...
- [CQOI2011]放棋子--DP
题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...
- BZOJ3294: [Cqoi2011]放棋子(计数Dp,组合数学)
题目链接 解题思路: 发现一个性质,如果考虑一个合法的方案可以将行和列都压到一起,也就是说,在占用行数和列数一定的情况下,行列互换是不会影响答案的,那么考虑使用如下方程: $f[i][j][k]$为占 ...
随机推荐
- mysql全文索引之模糊查询
旧版的MySQL的全文索引只能用在MyISAM表格的char.varchar和text的字段上. 不过新版的MySQL5.6.24上InnoDB引擎也加入了全文索引,所以具体信息大家可以随时关注官网, ...
- Java岗 面试考点精讲(基础篇01期)
即将到来金三银四人才招聘的高峰期,渴望跳槽的朋友肯定跟我一样四处找以往的面试题,但又感觉找的又不完整,在这里我将把我所见到的题目做一总结,并尽力将答案术语化.标准化.预祝大家面试顺利. 术语会让你的面 ...
- php环境安装
Windows安装 下载php压缩包, http://php.net/downloads.php, 一定要下载Windows版本的呦 将压缩包解压到指定目录下: 创建配置文件, 其中有两个配置文件在根 ...
- Java Cookie工具类
1.Cookie跨域 Cookie不能跨顶级域名访问,但是二级域名可以共享Cookie,所以要实现跨域,有一定的局限性. 2.代码 package com.DingYu.Cookie; import ...
- a dive in react lifecycle
背景:我在react文档里找生命周期的图,居然没有,不敢相信我是在推特上找到的... 正文 react v16.3 新生命周期: static getDerivedStateFromProps get ...
- js 金额处理加小数点后两位
function toDecimal2(x) { var f = parseFloat(x); if (isNaN(f)) { return false; } var f = Math.round(x ...
- es6 语法 (iterator和for...of循环)
Iterator遍历器 遍历器(Iterator)就是这样一种机制.它是一种接口,为各种不同的数据结构提供统一的访问机制.任何数据结构只要部署Iterator接口,就可以完成遍历操作(即依次处理该数据 ...
- vue从入门到进阶:指令与事件(二)
一.插值 v-once 通过使用 v-once 指令,你也能执行一次性地插值,当数据改变时,插值处的内容不会更新.但请留心这会影响到该节点上所有的数据绑定: span v-once>这个将不会改 ...
- 小tips:JS之浅拷贝与深拷贝
浅拷贝: function extendCopy(p) { var c = {}; for (var i in p) { c[i] = p[i]; } return c; } 深拷贝: functio ...
- linux 安装 redsi
下载.解压.编译 wget http://download.redis.io/releases/redis-4.0.10.tar.gz tar xzf redis-4.0.10.tar.gz cd r ...