【CQOI2011】放棋子
【CQOI2011】放棋子
在一个n行m列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列。有多少种方法? 例如\(,n=m=3\),有两个白棋子和一个灰棋子,下面左边两种方法都是合法的,但右边两种都是非法的。

输出答案对\(10^9+9\)取模的结果。
我们设\(f_{i,j,k}\)表示前\(i\)种颜色的棋子,占了\(j\)行\(k\)列的方案数。
转移时,考虑第\(i\)种颜色占了\(j'\)行\(k'\)列的方案数为\(g_{i,j',k'}\)
f_{i,j,k}=\sum f_{i-1,j-j',k-k'}\cdot g_{i,j',k'}\cdot \binom{n-j+j'}{j'}\cdot \binom{m-k+k'}{k'}
\]
考虑求\(g_{i,j',k'}\)。
我们求出最多占了\(j'\)行\(k'\)列的方案数为\(h_{i,j',k'}\)。\(h_{i,j',k'}=\binom{j'\cdot k'}{c_i}\)。\(c_{i}\)就是第\(i\)种颜色的棋子数量。然后容斥一下就好了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 35
#define C 15
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=1e9+9;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
int n,m,q;
int size[C];
ll f[N][N][C];
ll g[N][N];
ll fac[N*N],ifac[N*N];
ll c(int n,int m) {return fac[n]*ifac[m]%mod*ifac[n-m]%mod;}
void pre(int now) {
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(i*j>=size[now]) g[i][j]=c(i*j,size[now]);
}
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
for(int q=1;q<=i;q++) {
for(int k=1;k<=j;k++) {
if(q==i&&k==j) continue ;
g[i][j]=(g[i][j]-g[q][k]*c(i,q)%mod*c(j,k)%mod+mod)%mod;
}
}
}
}
}
int main() {
n=Get(),m=Get(),q=Get();
fac[0]=1;
for(int i=1;i<=n*m;i++) fac[i]=fac[i-1]*i%mod;
ifac[n*m]=ksm(fac[n*m],mod-2);
for(int i=n*m-1;i>=0;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
for(int i=1;i<=q;i++) size[i]=Get();
f[0][0][0]=1;
for(int i=1;i<=q;i++) {
memset(g,0,sizeof(g));
pre(i);
for(int j=0;j<=n;j++) {
for(int k=0;k<=m;k++) {
if(!f[j][k][i-1]) continue ;
for(int j2=j+1;j2<=n;j2++) {
for(int k2=k+1;k2<=m;k2++) {
if(!g[j2-j][k2-k]) continue ;
(f[j2][k2][i]+=f[j][k][i-1]*g[j2-j][k2-k]%mod*c(n-j,j2-j)%mod*c(m-k,k2-k))%=mod;
}
}
}
}
}
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
(ans+=f[i][j][q])%=mod;
cout<<ans;
return 0;
}
【CQOI2011】放棋子的更多相关文章
- BZOJ 3294: [Cqoi2011]放棋子
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 628 Solved: 238[Submit][Status] ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- [CQOI2011]放棋子 (DP,数论)
[CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
- P3158 [CQOI2011]放棋子(dp+组合数)
P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...
- BZOJ3294: [Cqoi2011]放棋子
Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...
- [CQOI2011]放棋子--DP
题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...
- BZOJ3294: [Cqoi2011]放棋子(计数Dp,组合数学)
题目链接 解题思路: 发现一个性质,如果考虑一个合法的方案可以将行和列都压到一起,也就是说,在占用行数和列数一定的情况下,行列互换是不会影响答案的,那么考虑使用如下方程: $f[i][j][k]$为占 ...
随机推荐
- Layui table 组件的使用:初始化加载数据、数据刷新表格、传参数
背景 笔者之前一直使用 bootstrap table ,因为当前项目中主要使用 Layui 框架,于是也就随了 Layui table ,只是在使用的时候出现了一些问题,当然也是怪自己不熟悉的锅吧! ...
- frp 初探
条件: (1) 服务器端要有公网 IP (2) 客户端能上网,能够访问服务器的公网 IP 下载 https://github.com/fatedier/frp/releases 根据服务器和客户端的操 ...
- vs2010 编译平台 X86 X64 anycpu
X86既32位程序,X64既64位程序,anycpu会根据当前的操作系统位数决定 但是如果应用程序编译成anycpu,会由操作系统位数决定,如果是dll之类的,会由调用dll的主程序位数决定 所以一般 ...
- mysql常用操作小节
比如要将表user 中的字段 username修改为 name: ); 其他关于表字段信息的修改: 1.添加字段:给表 user 添加字段 password 在 id 后面; ) NOT NULL A ...
- 【LInux】查看Linux系统版本信息
一.查看Linux内核版本命令(两种方法): 1.cat /proc/version [root@S-CentOS home]# cat /proc/versionLinux version 2.6. ...
- [工具配置]requirejs 多页面,多入口js文件打包总结
需要明确以下几点: 1.本地前端调试代码肯定是调用原始的路径以及代码,但是线上运行的肯定是通过打包后的另一个路径,这儿就是生成的dist文件夹了. 2.requirejs的引入,线上跟线下的路径怎么控 ...
- java内存分配与垃圾回收
JVM的内存分配主要基于两种,堆和栈. 我们来看一下java程序运行时候的内存分配策略: 1):静态存储区(方法区): 2):栈区: 3):堆区: 1):主要存放静态数据,全局static数据和常量. ...
- 小米手机Toast显示带应用名称问题解决方法
近期为了适配刘海屏,向公司申购了一步小米8的手机,然后测试人员那边测出来一堆适配的问题,其中有一个每一个Toast会显示app的名称+显示的内容,然后网上查找了一下解决方法记录一下,顺便封装了Toas ...
- (办公)Spring boot(系列)的返回json封装类
package com.imooc.util; import com.fasterxml.jackson.databind.ObjectMapper; /** * 自定义响应数据结构: * 这个类是提 ...
- MySQL 基本语句(1)
一.cmd命令行的常用命令: 当我们使用MySQL 5.5 Command Line Client这个客户端登陆时,只能登陆root用户.如果今后创建了别的用户,就很麻烦了,所以我们不用MySQL 5 ...