题目

输入n、w、h($1\leqslant n \leqslant 10, 1\leqslant w,h \leqslant n$),求能放在w*h网格里的不同的n连块的个数(注意,平移、旋转、翻转后相同的算作一种)。例如,2*4里的5连块有5种(第一行),而3*3里的8连块有以下3种(第二行),如图所示。

题解

判重部分有点难……茫然

看了紫书

平移可以强制整个图放左上角

旋转和翻转比较不好判断= =

因为旋转加翻转可能有多种情况(不知道有8种),害怕太慢不敢写

但输入比较少,直接打表

代码就不贴了,太丢人了(记下思路= =)

教训

1.应该先用stl枚举下最大输入的情况数,然后开数组

2.因为有旋转,宽度和高度最后再考虑

3.直接存每个点的坐标,用矩阵存不好枚举

UVA 1602 Lattice Animals的更多相关文章

  1. UVA - 1602 Lattice Animals (暴力+同构判定)

    题目链接 题意:求能放进w*h的网格中的不同的n连通块个数(通过平移/旋转/翻转后相同的算同一种),1<=n<=10,1<=w,h<=n. 刘汝佳的题真是一道比一道让人自闭.. ...

  2. UVa 1602 Lattice Animals (STL && 生成n连块 && 无方向形状判重)

    题意 : 给定一个 w * h 的 矩阵,在矩阵中找不同n个连通块的个数(旋转,翻转,平移算作一种) 分析 : 这题的关键点有两个 ① 生成n连块并且存储起来(因为题目是多测试用例,如果每一次都重新生 ...

  3. 【DFS】【打表】Lattice Animals

    [ZOJ2669]Lattice Animals Time Limit: 5 Seconds      Memory Limit: 32768 KB Lattice animal is a set o ...

  4. UVA 11768 - Lattice Point or Not(数论)

    UVA 11768 - Lattice Point or Not option=com_onlinejudge&Itemid=8&page=show_problem&categ ...

  5. UVA 11768 Lattice Point or Not(扩展欧几里德)

    将直线转化为ax + by = c的形式,然后扩展欧几里得求在[x1, x2]之间的解 对直线与坐标轴平行的特判 调试了好长时间,注意: 1 正负数转化为整型的处理 2 注意判断有无解 #includ ...

  6. 【POJ】2170 Lattice Animals

    1. 题目描述给定$n \times m, n.m \in [1, 10]$的方格,求不同形状的$[1 \cdots 10]$联通块的个数?所谓不同形状,表示不能通过平移.旋转.镜像实现相同的形状.2 ...

  7. UVA 11768 - Lattice Point or Not

    首先本题需要用到扩展欧几里得算法…… 关于exgcd算法的一点简略证明: 那么,对于函数exgcd(a,b)=(d,x,y),其中d满足d=gcd(a,b); (x,y)满足ax+by=d; 则exg ...

  8. UVa 1602 网格动物(回溯)

    https://vjudge.net/problem/UVA-1602 题意:计算n连通块不同形态的个数. 思路: 实在是不知道该怎么做好,感觉判重实在是太麻烦了. 判重就是判断所有格子位置是否都相同 ...

  9. UVA - 11768 Lattice Point or Not (扩展欧几里得)

    求一条线段上有多少个整点. 是道扩欧基础题,列出两点式方程,然后分四种情况讨论即可.但细节处理较多很容易写挫(某zzWA了十几发才过掉的). 由于数据精度较小,浮点数比较没有用eps,直接==比较了. ...

随机推荐

  1. maven笔记-将本地jar包打包进可执行jar中

    参考资料:http://www.cnblogs.com/richard-jing/archive/2013/01/27/Maven_localjar.html 使用本地jar <dependen ...

  2. Elicpse使用技巧-打开选中文件文件夹或者包的当前目录

    很多时候,我们需要在eclipse那里打开选中文件(文件夹,包)的当前目录,在资源管理器那里显示这个目录,这个时候,我们又不想采用“选中文件/文件夹/包名--右击--Properties--Locat ...

  3. vue的高阶组件

    探索Vue高阶组件 探索Vue高阶组件的使用 Vue高阶组件的使用方法 高阶组件应用-组件重新实例化 深入理解React 高阶组件 探索Vue高阶组件 2018-01-05 探索Vue高阶组件 Vue ...

  4. iOS开发之线程组解决请求多个接口数据,完成后,再刷新界面

    1.多任务请求接口,完成后,在刷新数据,常用方法 2018年07月18日 16:34:38 hbblzjy 阅读数:1382 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...

  5. openstack-KVM-存储配置

    一.块存储设备 1.存储设备类型 IDE SCSI 软盘 U盘 virtio磁盘(KVM使用类型) 2.查看存储设备 lspci | grep IDE lspci | grep SCSI lspci ...

  6. shell脚本使用记录一:操作文件

    一,连接远程数据库(保证在服务器上能使用mysql命令行,至少要安装mysql客户端) #!/bin/bash HOSTNAME="ip" PORT=" USERNAME ...

  7. HDU 3947 Assign the task

    http://acm.hdu.edu.cn/showproblem.php?pid=3974 Problem Description There is a company that has N emp ...

  8. PAT L2-020 功夫传人

    https://pintia.cn/problem-sets/994805046380707840/problems/994805059118809088 一门武功能否传承久远并被发扬光大,是要看缘分 ...

  9. 前端三大框架Angular & React & Vue

    前端三大框架: Angular[Google]:一套框架,多种平台移动端 & 桌面端.学会用Angular构建应用,然后把这些代码和能力复用在多种多种不同平台的应用上 —— Web.移动 We ...

  10. MySQL 5.7默认ONLY_FULL_GROUP_BY语义介绍

    mysql 5.7版本 出现 ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corre ...