GGS-DDU

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1021    Accepted Submission(s): 504

Problem Description
Do you think this is a strange problem name? That is because you don't know its full name---'Good Good Study and Day Day Up!". Very famous sentence! Isn't it?

Now "GGS-DDU" is lzqxh's target! He has N courses and every course is divided into a plurality of levels. Just like College English have Level 4 and Level 6.

To simplify the problem, we suppose that the i-th course has Levels from level 0 to level a[i]. And at the beginning, lzqxh is at Level 0 of every course. Because his target is "GGS-DDU", lzqxh wants to reach the highest Level of every course.

Fortunately, there are M tutorial classes. The i-th tutoial class requires that students must reach at least Level L1[i] of course c[i] before class begins. And after finishing the i-th tutorial class, the students will reach Level L2[i] of course d[i]. The i-th tutoial class costs lzqxh money[i].

For example, there is a tutorial class only students who reach at least Level 5 of "Tiyu" can apply. And after finishing this class, the student's "MeiShu" will reach Level 10 if his "MeiShu"'s Level is lower than 10. (Don't ask me why! Supernatural class!!!")

Now you task is to help lzqxh to compute the minimum cost!

 
Input
The input contains multiple test cases.

The first line of each case consists of two integers, N (N<=50) and M (M<=2000). 
The following line contains N integers, representing a[1] to a[N]. The sum of a[1] to a[N] will not exceed 500. 
The next M lines, each have five integers, indicating c[i], L1[i], d[i], L2[i] and money[i] (1<=c[i], d[i]<=N, 0<=L1[i]<=a[c[i]], 0<=L2[i]<=a[d[i]], money[i]<=1000) for the i-th tutorial class. The courses are numbered from 1 to N.

The input is terminated by N = M = 0.

 
Output
Output the minimum cost for achieving lzqxh's target in a line. If his target can't be achieved, just output -1.
 
Sample Input
3 4
3 3 1
1 0 2 3 10
2 1 1 2 10
1 2 3 1 10
3 1 1 3 10
0 0
 
Sample Output
40
 
Author
SYSU
 
Source
 
 
把没门课分成1 - a[i] 个等级  每个等级i都向i - 1 连一条边 表示 如果 当前达到了等级i  则 1 - (i - 1) 都相当于达到了
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int ID[maxn], IN[maxn], vis[maxn], pre[maxn];
int cnt; struct node
{
int u, v, c;
}Node[maxn*]; void add(int u, int v, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt++].c = c; } int dirmst(int root, int n, int m)
{
int ans = ;
while(true)
{
for(int i=; i<n; i++) IN[i] = INF; //记录最小前驱边的值 //1、找最小前驱边
for(int i=; i<m; i++)
{
int u = Node[i].u;
int v = Node[i].v;
if(Node[i].c < IN[v] && u != v)
{
pre[v] = u;
IN[v] = Node[i].c;
// cout<< e.v << " " << e.u <<endl;
}
} //2、判断是否联通
for(int i=; i<n; i++)
{
if(i == root) continue;
if(IN[i] == INF) return -;
} //3、找环
int cntnode = ;
mem(ID, -);
mem(vis, -);
IN[root] = ;
for(int i=; i<n; i++)
{
ans += IN[i];
int v = i;
while(vis[v] != i && ID[v] == - && v != root)
{
vis[v] = i;
v = pre[v];
}
//如果存在环 则把环中的点缩为一个点
if(v != root && ID[v] == -)
{
for(int j=pre[v]; j!=v; j=pre[j])
{
ID[j] = cntnode;
}
ID[v] = cntnode++;
}
}
if(cntnode == ) break; //没有环就结束 //重新标记其它点
for(int i=; i<n; i++)
if(ID[i] == -)
ID[i] = cntnode++;
for(int i=; i<m; i++)
{
int v = Node[i].v;
Node[i].u = ID[Node[i].u];
Node[i].v = ID[Node[i].v];
if(Node[i].u != Node[i].v)
Node[i].c -= IN[v];
}
n = cntnode;
root = ID[root];
}
return ans; } int sum[maxn], a[maxn], d, c, L1, L2;
int w, s; int main()
{
int n, m;
while(scanf("%d%d", &n, &m) != EOF)
{
if(n == && m == ) break;
mem(sum, );
cnt = ;
for(int i = ; i <= n; i++)
{
scanf("%d", &a[i]);
a[i]++;
sum[i] = sum[i - ] + a[i];
}
for(int i = ; i <= m; i++)
{
//cin >> c >> L1 >> d >> L2 >> w;
scanf("%d%d%d%d%d", &c, &L1, &d, &L2, &w);
L1++, L2++;
add(sum[c - ] + L1, sum[d - ] + L2, w);
}
s = ;
for(int i = ; i <= n; i++)
{
add(s, sum[i - ] + , );
for(int j = a[i]; j >= ; j--)
add(sum[i - ] + j, sum[i - ] + j - , );
}
int ans = dirmst(s, sum[n] + , cnt);
if(ans < )
printf("-1\n");
else
printf("%d\n", ans); } return ;
}
 

GGS-DDU

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1021    Accepted Submission(s): 504

Problem Description
Do you think this is a strange problem name? That is because you don't know its full name---'Good Good Study and Day Day Up!". Very famous sentence! Isn't it?

Now "GGS-DDU" is lzqxh's target! He has N courses and every course is divided into a plurality of levels. Just like College English have Level 4 and Level 6.

To simplify the problem, we suppose that the i-th course has Levels from level 0 to level a[i]. And at the beginning, lzqxh is at Level 0 of every course. Because his target is "GGS-DDU", lzqxh wants to reach the highest Level of every course.

Fortunately, there are M tutorial classes. The i-th tutoial class requires that students must reach at least Level L1[i] of course c[i] before class begins. And after finishing the i-th tutorial class, the students will reach Level L2[i] of course d[i]. The i-th tutoial class costs lzqxh money[i].

For example, there is a tutorial class only students who reach at least Level 5 of "Tiyu" can apply. And after finishing this class, the student's "MeiShu" will reach Level 10 if his "MeiShu"'s Level is lower than 10. (Don't ask me why! Supernatural class!!!")

Now you task is to help lzqxh to compute the minimum cost!

 
Input
The input contains multiple test cases.

The first line of each case consists of two integers, N (N<=50) and M (M<=2000). 
The following line contains N integers, representing a[1] to a[N]. The sum of a[1] to a[N] will not exceed 500. 
The next M lines, each have five integers, indicating c[i], L1[i], d[i], L2[i] and money[i] (1<=c[i], d[i]<=N, 0<=L1[i]<=a[c[i]], 0<=L2[i]<=a[d[i]], money[i]<=1000) for the i-th tutorial class. The courses are numbered from 1 to N.

The input is terminated by N = M = 0.

 
Output
Output the minimum cost for achieving lzqxh's target in a line. If his target can't be achieved, just output -1.
 
Sample Input
3 4
3 3 1
1 0 2 3 10
2 1 1 2 10
1 2 3 1 10
3 1 1 3 10
0 0
 
Sample Output
40
 
Author
SYSU
 
Source
 

GGS-DDU HDU - 4966的更多相关文章

  1. hdu 4966 GGS-DDU (最小树形图)

    比较好的讲解:http://blog.csdn.net/wsniyufang/article/details/6747392 view code//首先为除根之外的每个点选定一条入边,这条入边一定要是 ...

  2. HDU 4966 GGS-DDU(最小树形图)

    n个技能,每个技能有0-a[i]的等级,m个课程,每个课程需要前置技能c[i]至少达到lv1[i]等级,效果是技能d[i]达到lv2[i]等级,花费w[i]. 输出最小花费使得全技能满级(初始全技能0 ...

  3. 【刷题】HDU 4966 GGS-DDU

    Problem Description Do you think this is a strange problem name? That is because you don't know its ...

  4. hdu 4966 最小树形图

    将每门课等级拆成0,1,2,3...a[i]个点,对每一个等级大于0的点向它低一级连边,权值为0[意思是,若修了level k.则level(0~k)都当做修了] 将输入的边建边,权值为money[i ...

  5. hdu 4960 Another OCD Patient (最短路 解法

    http://acm.hdu.edu.cn/showproblem.php?pid=4960 2014 Multi-University Training Contest 9 Another OCD ...

  6. HDU 5643 King's Game 打表

    King's Game 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5643 Description In order to remember hi ...

  7. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

随机推荐

  1. 《React Native 精解与实战》书籍连载「配置 iOS 与 Android 开发环境」

    此文是我的出版书籍<React Native 精解与实战>连载分享,此书由机械工业出版社出版,书中详解了 React Native 框架底层原理.React Native 组件布局.组件与 ...

  2. H5 20-属性选择器上

    20-属性选择器上 --> 我是段落1 我是段落2 我是段落3 我是段落4 我是段落5 <!DOCTYPE html> <html lang="en"> ...

  3. C++入门之初话多态与虚函数

    多态性是面向对象程序设计的又一个重要思想,关于多态的详尽描述,请看本人的收藏https://www.cnblogs.com/hust-ghtao/p/3512461.html.这篇博文中,详尽的探讨了 ...

  4. Thrift序列化与反序列化

    Thrift序列化与反序列化的实现机制分析 Thrift是如何实现序死化与反序列化的,在IDL文件中,更改IDL文件中的变量序号或者[使用默认序号的情况下,新增变量时,将新增的变量不放在IDL文件的结 ...

  5. MySQL 批量修改某一列的值为另外一个字段的值

    mysql> select * from fruit; +----+--------+-------+ | id | name | price | +----+--------+-------+ ...

  6. python安装与使用(Windows)

    日常使用PHP开发较多,但是有些地方PHP的语言的瓶颈就显露出来了,例如,同样是抓取一个网站的内容,使用PHP需要较为复杂的正则匹配,效率较为低下.python具有丰富的类库,拿过来直接可以使用,功能 ...

  7. 三、Object 对象常用操作方法

    Object 构造方法 一.asign vs 扩展运算符 ... 1.共同点:都是浅拷贝 2.开发推荐 扩展运算符... let obj={ name: 'Tom', age: 18 }; let o ...

  8. java线程池实现原理

    (1):线程池存在哪些状态,这些状态之间是如何进行切换的呢? (2):线程池的种类有哪些? (3):创建线程池需要哪些参数,这些参数的具体含义是什么? (4):将任务添加到线程池之后运行流程? (5) ...

  9. [转帖]一段关于Unix与 Linux的暗黑史

    一段关于Unix与 Linux的暗黑史 https://blog.csdn.net/a343315623/article/details/51436715 微软曾经开发过 MS-DOS Xenix O ...

  10. WSL Windows subsytem linux 的简单学习与使用

    1. win10 1709 以上的版本应该都增加上了 ctrl +r 运行 winver 查看版本 2. 添加删除程序 增加 wsl 增加一个功能 3. 打开cmd 输入 bash 即可 4. 可以将 ...