题目描述

  定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\)。

  给你\(m\)个图,问你这\(m\)个图组成的集合有多少个子集的异或图为一个连通图。

  \(n\leq 10,m\leq 60\)

题解

  考虑枚举图的子集划分,让被划分到不同子集的点之间没有连边,而在同一个子集里面的点可以连通,可以不连通。

  可以用高斯消元(线性基)得到满足条件的图的个数。设枚举的子集划分有\(k\)个集合,那么容斥系数就是\({(-1)}^{k-1}(k-1)!\)。并把当前的方案数乘以容斥系数计入答案。

  那么容斥系数是怎么来的呢?

  记\(c_i\)为\(i\)个集合的容斥系数。对于每一个联通块个数为\(j\)的图,对枚举到的联通块个数为\(i\)的方案有\(S(j,i)\)的贡献。

  我们只需要让\(\sum_{i=m}^nc(i)S(i,m)=[m=1]\)就可以了。

  可以打表消元消除容斥系数。

  时间复杂度:\(O(B_nn^2m)\),其中\(B_n\)是Bell数的第\(n\)项。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
char s[1010];
int n,m;
ull a[20][20];
int d[20];
ull ans=0;
ull pw[70];
ull fac[70];
ull c[70];
void dfs(int x,int y)
{
if(x>n)
{
int i,j,k;
for(i=0;i<m;i++)
c[i]=0;
for(i=1;i<=n;i++)
for(j=i+1;j<=n;j++)
if(d[i]!=d[j])
{
ll s=a[i][j];
for(k=m-1;k>=0;k--)
if(s&(1ll<<k))
{
if(!c[k])
{
c[k]=s;
break;
}
s^=c[k];
}
}
int num=0;
for(i=0;i<m;i++)
if(!c[i])
num++;
ans+=pw[num]*fac[y-1]*(y&1?1:-1);
return;
}
int i;
for(i=1;i<=y;i++)
{
d[x]=i;
dfs(x+1,y);
}
d[x]=y+1;
dfs(x+1,y+1);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d",&m);
int i,j,k;
int len;
fac[0]=1;
pw[0]=1;
for(i=1;i<=m;i++)
pw[i]=pw[i-1]<<1;
for(i=1;i<=m;i++)
{
scanf("%s",s+1);
if(i==1)
{
len=strlen(s+1);
for(j=2;j<=10;j++)
if(j*(j-1)/2==len)
break;
n=j;
}
int t=0;
for(j=1;j<=n;j++)
for(k=j+1;k<=n;k++)
if(s[++t]=='1')
a[j][k]|=1ll<<(i-1);
}
for(i=1;i<=n;i++)
fac[i]=fac[i-1]*i;
dfs(1,0);
printf("%llu\n",ans);
return 0;
}

【XSY2701】异或图 线性基 容斥原理的更多相关文章

  1. BZOJ 4671 异或图 | 线性基 容斥 DFS

    题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...

  2. bzoj 2115 [Wc2011] Xor 路径最大异或和 线性基

    题目链接 题意 给定一个 \(n(n\le 50000)\) 个点 \(m(m\le 100000)\) 条边的无向图,每条边上有一个权值.请你求一条从 \(1\)到\(n\)的路径,使得路径上的边的 ...

  3. 51Nod1577 异或凑数 线性基 构造

    国际惯例的题面:异或凑出一个数,显然是线性基了.显然我们能把区间[l,r]的数全都扔进一个线性基,然后试着插入w,如果能插入,则说明w不能被这些数线性表出,那么就要输出"NO"了. ...

  4. 【loj114】k大异或和 线性基+特判

    题目描述 给由 $n​$ 个数组成的一个可重集 $S​$ ,每次给定一个数 $k​$ ,求一个集合 $T⊆S​$ ,使得集合 $T​$ 在 $S​$ 的所有非空子集的不同的异或和中,其异或和 $T_1 ...

  5. LOJ.114.K大异或和(线性基)

    题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基, ...

  6. LOJ #113. 最大异或和 (线性基)

    题目链接:#113. 最大异或和 题目描述 这是一道模板题. 给由 \(n\) 个数组成的一个可重集 \(S\),每次给定一个数 \(k\),求一个集合 \(T \subseteq S\),使得集合 ...

  7. 51Nod1577 异或凑数 线性基

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1577.html 题意 给定一个长度为 n 的序列. 有 m 组询问,每一组询问给出 L,R,k ,询 ...

  8. 51nod 1577 异或凑数 线性基的妙用

    \(OTZgengyf\)..当场被吊打\(QwQ\) 思路:线性基 提交:\(3\)次 错因:往里面加数时\(tmp.p\)与\(i\)区分不清(还是我太菜了) 题解: 我们对每个位置的线性基如此操 ...

  9. [LOJ113] 最大异或和 - 线性基

    虽然是SB模板但还真是第一次手工(然而居然又被运算符优先级调戏了) #include <bits/stdc++.h> using namespace std; #define int lo ...

随机推荐

  1. c++入门之引用

    引用通常被用在函数形参传递的过程中.一般的参数传递的过程:将实参进行拷贝,函数中都是对拷贝的变量进行操作,而不是对原变量进行操作.但很多情况下,我们都希望对原变量进行操作.(比如交换两个变量的数值). ...

  2. 【评分】Beta 答辩总结

    [评分]Beta 答辩总结 总结 按时交 - 有分 晚交 - 0分 迟交一周以上 - 倒扣本次作业分数 抄袭 - 倒扣本次作业分数 由于前期不够重视,到beta评分才发现有5组的代码提交仅由一人&qu ...

  3. case when then的用法-leetcode交换工资

    case具有两种格式:简单case函数和case搜索函数. --简单case函数 case sex when ' then '男' when ' then '女’ else '其他' end --ca ...

  4. MySQL数据类型--日期和时间类型

    MySQL中的多种时间和格式数据类型 日期和时间类型是为了方便在数据库中存储日期和时间而设计的.MySQL中有多种表示日期和时间的数据类型. 其中,year类型表示时间,date类型表示日期,time ...

  5. openstack-KVM-存储配置

    一.块存储设备 1.存储设备类型 IDE SCSI 软盘 U盘 virtio磁盘(KVM使用类型) 2.查看存储设备 lspci | grep IDE lspci | grep SCSI lspci ...

  6. 数据快速批量添加到Elasticsearch

    如何把数据快速批量添加到Elasticsearch中 问题来源 最近新做一个项目,有部分搜索比较频繁的数据,而且量级比较大,预计一两年时间很可能达到100G,项目要求不要存在数据库中,最终出来有两个方 ...

  7. sqlserver笔记

    表结构: 一,字段类型sqlserver jdbc java char char Stringnchar nchar Stringvarchar varchar Stringnvarchar nvar ...

  8. CentOS下配置SS5(SOCKS5)代理服务器

    方案:使用开源的SS5( Socks Server 5 ) 官网:http://ss5.sourceforge.net/ (点击左侧的Software在右侧的Server处进入下载地址) CentOs ...

  9. C#的修饰符

    C#的修饰符 废话少说,直接上总结: 一.在命名空间下: 类:默认修饰符为internal 接口:默认的修饰符为internal 结构体:默认的修饰符为internal 枚举:默认的修饰符为inter ...

  10. JavaList addAll removeAll

    List<String>list1=new ArrayList<>(); list1.add("a"); list1.add("b"); ...