loj 6436 PKUSC2018 神仙的游戏
好妙蛙
即串\(s\)长度为\(n\)首先考虑如果一个长度为\(len\)的\(border\)存在,当且仅当对所有\(i\in[1,len],s[i]=s[n-len+i]\),也就是所有模\(n-len\)同余的所有位置上的字符要相同,如果存在一对(0,1),他们之间的下标之差为\(x\),则对于所有的\(y|x\),长度为\(n-y\)的\(border\)不存在
所以暴力做法是枚举所有确定的(0,1)对,然后把所有得到的长度以及这些长度的因数全部标记,利用质因数分解统计答案可以做到\(O(nlogn)\)
现在考虑优化前面的枚举部分,搞两个生成函数\(A(x)=\sum_{i=0}^{n-1}[s_i=0]x^i,B(x)=\sum_{i=0}^{n-1}[s_{n-i-1}=1]x^i\),如果把他们\(FFT\)起来,得到的\(C(x)\)中\(C_k=\sum_{j=0}^{k}A_jB_{k-j}=\sum_{j=0}^{k}[s_j=0][s_{n-k-1+j}=1]x^k\),这第\(k\)项的系数也就是下标之差为\(|n-k-1|\)的(0,1)对数量
然后就可以\(O(nlogn)\)加大常数完成此题
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register
#define eps (1e-5)
using namespace std;
const int N=500000+10,M=1050000+10;
const db pi=acos(-1);
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct comp
{
db r,i;
comp(){r=i=0;}
comp(db nr,db ni){r=nr,i=ni;}
il comp operator + (const comp &bb) const {return comp(r+bb.r,i+bb.i);}
il comp operator - (const comp &bb) const {return comp(r-bb.r,i-bb.i);}
il comp operator * (const comp &bb) const {return comp(r*bb.r-i*bb.i,r*bb.i+i*bb.r);}
}a[M],b[M];
int n,m,nn,l,rdr[M];
il void fft(comp *a,int op)
{
comp W,w,x,y;
for(int i=0;i<nn;++i) if(i<rdr[i]) swap(a[i],a[rdr[i]]);
for(int i=1;i<nn;i<<=1)
{
W=comp(cos(pi/i),op*sin(pi/i));
for(int j=0;j<nn;j+=i<<1)
{
w=comp(1,0);
for(int k=0;k<i;++k,w=w*W)
{
x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y;
}
}
}
}
char cc[N];
bool no[N];
int prm[N],tt,pp[N];
int main()
{
scanf("%s",cc);
n=strlen(cc);
m=n+n;
for(nn=1;nn<=m;nn<<=1) ++l;
for(int i=0;i<nn;++i) rdr[i]=(rdr[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<n;++i) a[i].r=(cc[i]=='0'),b[i].r=(cc[n-i-1]=='1');
fft(a,1),fft(b,1);
for(int i=0;i<nn;++i) a[i]=a[i]*b[i];
fft(a,-1);
for(int i=0;i<n;++i) no[i]=(fabs(a[n-1-i].r)/nn>eps||fabs(a[n-1+i].r)/nn>eps);
for(int i=2;i<=n;++i)
{
if(!pp[i]) pp[i]=i,prm[++tt]=i;
for(int j=1;j<=tt&&i*prm[j]<=n;++j)
{
pp[i*prm[j]]=prm[j];
if(i%prm[j]==0) break;
}
}
for(int i=n-1;i>=1;--i)
{
int x=i;
while(x>1) no[i/pp[x]]|=no[i],x/=pp[x];
}
LL ans=0;
for(int i=1;i<=n;++i) ans^=1ll*(no[n-i]^1)*i*i;
printf("%lld\n",ans);
return 0;
}
loj 6436 PKUSC2018 神仙的游戏的更多相关文章
- BZOJ5372: [Pkusc2018]神仙的游戏
BZOJ5372: [Pkusc2018]神仙的游戏 https://lydsy.com/JudgeOnline/problem.php?id=5372 分析: 如果\(len\)为\(border\ ...
- BZOJ5372: PKUSC2018神仙的游戏
传送门 Sol 自己还是太 \(naive\) 了,上来就构造多项式和通配符直接匹配,然后遇到 \(border\) 相交的时候就 \(gg\) 了 神仙的游戏蒟蒻还是玩不来 一个小小的性质: 存在长 ...
- bzoj 5372: [Pkusc2018]神仙的游戏
Description 小D和小H是两位神仙.他们经常在一起玩神仙才会玩的一些游戏,比如"口算一个4位数是不是完全平方数". 今天他们发现了一种新的游戏:首先称s长度为len的前缀 ...
- BZOJ5372 PKUSC2018神仙的游戏(NTT)
首先有一个想法,翻转串后直接卷积看有没有0匹配上1.但这是必要而不充分的因为在原串和翻转串中?不能同时取两个值. 先有一些结论: 如果s中长度为len的前缀是border,那么其存在|s|-len的循 ...
- [LOJ6436][PKUSC2018]神仙的游戏
loj description 给你一个只有01和?的字符串,问你是否存在一种把?改成01的方案使串存在一个长度为\(1-n\)的\(border\).\(n\le5\times10^5\) sol ...
- LOJ6436 [PKUSC2018] 神仙的游戏 【FFT】
题目分析: 题目要求前后缀相同,把串反过来之后是一个很明显的卷积的形式.这样我们可以完成初步判断(即可以知道哪些必然不行). 然后考虑一下虽然卷积结果成立,但是存在问号冲突的情况. 箭头之间应当不存在 ...
- [PKUSC2018]神仙的游戏(FFT)
给定一个01?串,对所有len询问是否存在一种填法使存在长度为len的border. 首先有个套路的性质:对于一个长度为len的border,这个字符串一定有长度为n-len的循环节(最后可以不完整) ...
- [PKUSC2018]神仙的游戏
题目 画一画就会发现一些奇诡的性质 首先如果\(len\)为一个\(\operatorname{border}\),那么必然对于\(\forall i\in [1,len]\),都会有\(s_i=s_ ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
随机推荐
- ArcGIS for qml -关于空间参考如何选择设置
作者: 狐狸家的鱼 Github: 八至 版权声明:如需转载请获取授权和联系作者 1.关于空间参考 空间参考可以通过众所周知的ID(WKID) - 整数值来引用. 官网指南中也有对此的专门说明 htt ...
- Python函数--装饰器进阶
开放封闭原则 1.对扩展是开放的 为什么要对扩展开放呢? 我们说,任何一个程序,不可能在设计之初就已经想好了所有的功能并且未来不做任何更新和修改.所以我们必须允许代码扩展.添加新功能. 2.对修改是封 ...
- bcftools合并vcf文件
见命令: bcftools merge A.vcf.gz B.vcf.gz C.vcf.gz -Oz -o ABC.vcf.gz 参考链接:http://vcftools.sourceforge.ne ...
- 第十一节、Harris角点检测原理(附源码)
OpenCV可以检测图像的主要特征,然后提取这些特征.使其成为图像描述符,这类似于人的眼睛和大脑.这些图像特征可作为图像搜索的数据库.此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比 ...
- host访问goole
https://laod.cn/hosts/2016-google-hosts.html http://whosmall.com/?post=148
- Failed to start Vsftpd ftp daemon错误
配置 vsftpd.conf文件后 重启ftp服务出现 Failed to start Vsftpd ftp daemon错误 总是 启动失败 解决方法 将配置文件中的 listen=YES 改为 l ...
- exgcd证明和最基础应用
如何求解这个方程:\(ax + by = gcd (a, b)\)? \(∵gcd(a, b) = gcd (b, a \% b)\) \(∴\)易证 $ gcd(a, b)$ 总是可以化为 \(gc ...
- DB9 ------ 接口定义
下图是母座和公座的接口定义: 特别提醒:以上是公座和母座的接口定义,如果是串口线,RXD就变成TXD,以此类推.
- Tensorflow object detection API 搭建物体识别模型(二)
二.数据准备 1)下载图片 图片来源于ImageNet中的鲤鱼分类,下载地址:https://pan.baidu.com/s/1Ry0ywIXVInGxeHi3uu608g 提取码: wib3 在桌面 ...
- MySQL常见报错汇总
1>.ERROR 1290 (HY000): The MySQL server is running with the --secure-file-priv option so it canno ...