基于Manhattan最小生成树的莫队算法

点u,v的Manhattan距离:distance(u,v)= |x2-x1|+|y2-y1|
Manhattan最小生成树:边权值为两个点Manhattan距离的最小生成树。
普通算法:prim复杂度O(N2),或者处理出所有边,那么kruskal复杂度O(N2logN),这么庞大的复杂度显然是不行的
Manhattan最小生成树算法:以一个点为原点建立直角坐标系,在每45度内只会向距离该点最近的一个点连边。
简略证明:

如图,我们不妨设|AB|<=|AC|;
那么可以证明|AC|>=|BC|,证明如下
|AB|=x1+y1,|AC|=x2+y2,|BC|=|x1-x2|+|y1-y2|。而由于B和C都在y轴向右45度的区域内,有y-x>0且x>0。
下面我们分情况讨论:
- x1>x2且y1>y2。这与|AB|≤|AC|矛盾;
- x1≤x2且y1>y2。此时|BC|=x2-x1+y1-y2,|AC|-|BC|=x2+y2-x2+x1-y1+y2=x1-y1+2*y2。由前面各种关系可得y1>y2>x2>x1。假设|AC|<|BC|即y1>2*y2+x1,那 么|AB|=x1+y1>2*x1+2*y2,|AC|=x2+y2<2*y2<|AB|与前提矛盾,故|AC|≥|BC|;
- x1>x2且y1≤y2。与2同理;
- x1≤x2且y1≤y2。此时显然有|AB|+|BC|=|AC|,即有|AC|>|BC|。
综上有|AC|≥|BC|,也即在这个区域内只需选择距离A最近的点向A连边。
显然|AC|是权值最大的边,那么我们在建立最小生成树时必然不会选择它,即我们必然连接点A,B而不是A,C
接下去用kruskal算法在O(NlogN)复杂度内处理这N条边:
我们只需考虑在一块区域内的点,其他区域内的点可以通过坐标变换“移动”到这个区域内。为了方便处理,我们考虑在y轴向右45度的区域。在某个点A(x0,y0)的这个区域内的点B(x1,y1)满足x1≥x0且y1-x1>y0-x0。这里对于边界我们只取一边,但是操作中两边都取也无所谓。那么|AB|=y1-y0+x1-x0=(x1+y1)-(x0+y0)。在A的区域内距离A最近的点也即满足条件的点中x+y最小的点。因此我们可以将所有点按x坐标排序,再按y-x离散,用线段树或者树状数组维护大于当前点的y-x的最小的x+y对应的点。时间复杂度O(NlogN)。
至于坐标变换,一个比较好处理的方法是第一次直接做;第二次沿直线y=x翻转,即交换x和y坐标;第三次沿直线x=0翻转,即将x坐标取相反数;第四次再沿直线y=x翻转。注意只需要做4次,因为边是双向的。
至此,整个问题就可以在O(NlogN)的复杂度内解决了。
举例:
显然,边(i,j), (j,k), (i,k)构成一个环<i,j,k>,而(i,k)一定是最长边,可以被删去。所以我们只连边(i,j)。
为了避免重复加边,我们只考虑R1~R4这4个区域。(总共加了4N条边)
这4个区域的点(x,y)要满足什么条件?
- 如果点(x,y)在R1,它要满足:x ≥ xi ,y – x ≥ yi – xi(最近点的x + y最小)
- 如果点(x,y)在R2,它要满足:y ≥ yi ,y – x ≤ yi – xi(最近点的x + y最小)
- 如果点(x,y)在R3,它要满足:y ≤ yi ,y + x ≥ yi + xi(最近点的y – x最小)
- 如果点(x,y)在R4,它要满足:x ≥ xi ,y + x ≤ yi – xi(最近点的y – x最小)
基于Manhattan算法的莫队算法:
对于询问[l,r],我们可以将其看做一个二维平面上的点,如果询问从状态[l,r]转移到询问[l,r+1]所需时间为O(1),那么就可以用莫队算法解决。
显然询问[l1,r1]转移到询问[l2,r2]所需的时间为|l2-l1|+|r2-r1|,这时候我们可以发现这个需要的时间是两个点的Manhattan距离,
那么我们就可以用Manhattan最小生成树来优化这些所有询问之间状态转移所需的时间。
我们先对序列分块,然后以询问左端点所在的分块的序号为第一关键字,右端点的大小为第二关键字进行排序,按照排序好的顺序计算,复杂度就会大大降低。
- 分块相同时,右端点递增是
的,分块共有
个,复杂度为
- 分块转移时,右端点最多变化
,分块共有
个,复杂度为
- 分块相同时,左端点最多变化
,分块转移时,左端点最多变化
,共有
个询问,复杂度为
模板题:bzoj:小z的袜子
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define MAXN 50005
#define ll long long
using namespace std;
struct Query{
int L,R,id;
}q[MAXN];//所有询问
int s,col[MAXN];//col[i]是第i个袜子的颜色
ll ans[MAXN][],cnt[MAXN];//cnt[i]表示当前区间里颜色i出现的次数
/*先以块为关键字从小到大排序,
再以右端点为关键字进行从小到大排序*/
bool cmp(Query a,Query b){
if(a.L/s==b.L/s) return a.R<b.R;
return a.L/s<b.L/s;
}
//求最大公约数
int gcd(ll a,ll b){
return a?gcd(b%a,a):b;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
s=(int)sqrt(n);
for(int i=;i<=n;i++)
scanf("%d",&col[i]);
for(int i=;i<m;i++){
int a,b;
scanf("%d%d",&a,&b);
q[i]=(Query){a,b,i};
}
sort(q,q+m,cmp);//把询问排序
int L=,R=;
ll res=;
for(int i=;i<m;i++){//遍历每个询问
while(R<q[i].R){//右边界还没拓展到q[i].R,要往右边拓展
R++;
res+=(cnt[col[R]]+)*(cnt[col[R]]+)-cnt[col[R]]*cnt[col[R]];
cnt[col[R]]++;
}
while(L<q[i].L){//左边界超过了q[i].L,要往右边回缩
res-=cnt[col[L]]*cnt[col[L]]-(cnt[col[L]]-)*(cnt[col[L]]-);
cnt[col[L]]--;
L++;
}
while(R>q[i].R){//右边界超过了q[i].R,要往左边回缩
res-=cnt[col[R]]*cnt[col[R]]-(cnt[col[R]]-)*(cnt[col[R]]-);
cnt[col[R]]--;
R--;
}
while(L>q[i].L){//左边界还没拓展到q[i].L,要往左边拓展
L--;
res+=(cnt[col[L]]+)*(cnt[col[L]]+)-cnt[col[L]]*cnt[col[L]];
cnt[col[L]]++;
}
ans[q[i].id][]=res-R+L-;//分子
ans[q[i].id][]=(ll)(R-L+)*(R-L);//分母
} for(int i=;i<m;i++){
int G=gcd(ans[i][],ans[i][]);
ans[i][]/=G;
ans[i][]/=G;
if(!ans[i][])//如果分子是0(可能出现的)
ans[i][]=;
}
for(int i=;i<m;i++)
printf("%lld/%lld\n",ans[i][],ans[i][]);
return ;
}
基于Manhattan最小生成树的莫队算法的更多相关文章
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- bzoj 2038 莫队算法
莫队算法,具体的可以看10年莫涛的论文. 大题思路就是假设对于区间l,r我们有了一个答案,那么对于区间l,r+1,我们 可以暴力的转移一个答案,那么对于区间l1,r1和区间l2,r2,需要暴力处理 的 ...
- HYSBZ2038 小Z的袜子(莫队算法)
今天学了一下传说中的解决离线询问不修改的一种算法.题目的意思非常简单,就是询问在一个[L,R]区间里的取两个物品,然后这两个物品颜色相同的概率.其实就是对于每种颜色i,这个区间里对应的个数cnt[i] ...
- bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)
[题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...
- BZOJ 3236 AHOI 2013 作业 莫队算法
题目大意:给出一些数,问在一个区间中不同的数值有多少种,和在一个区间中不同的数值有多少个. 思路:因为没有改动,所以就想到了莫队算法.然后我写了5K+的曼哈顿距离最小生成树,然后果断T了.(100s的 ...
- XOR and Favorite Number(莫队算法+分块)
E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 9894 Solved: 4561[Subm ...
- 【国家集训队2010】小Z的袜子[莫队算法]
[莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...
- 莫队算法详解和c实现
解析和实现 摘要: 莫队算法是一个对于区间.树或其他结构离线(在线)维护的算法,此算法基于一些基本算法,例如暴力维护,树状数组,分块,最小曼哈顿距离生成树,对其进行揉合从而产生的一个简单 ...
随机推荐
- Windows下python安装运行
1. 在python官网 https://www.python.org/downloads/windows/ 选择要下载的版本,我下载了最新版本 2. 双击运行 3. naxt 4. install ...
- python(四)类变量和实例变量
转载自[1] 实际这是个实例变量是否指向类变量的问题. python的类变量和实例变量,顾名思义,类变量是指跟类的变量,而实例变量,指跟类的具体实例相关联的变量,具体体现为self.x 等.实际要注意 ...
- 20165237 2017-2018-2 《Java程序设计》第5周学习总结
20165237 2017-2018-2 <Java程序设计>第5周学习总结 教材学习内容总结 1.内部类:在一个类中定义另一个类:外嵌类:包含内部类的类. 2.内部类的类体中不能声明类变 ...
- oracle dblink的创建与使用
一.什么是DBLINK dblink,顾名思义就是数据库的链接. 当我们要跨本地数据库访问另一个数据库中的表的数据时,在本地数据库中就必须要创建远程数据库的dblink,通过该dblink就可以达到访 ...
- python,中使用while...else 和 for...else 还有try...else,另外就是运用with关键字
其他语言中else只可以和if进行组合,也就是我们常见的if...else,但是python为else赋予了新的声明.它可以和while .for .try一起串联使用. 下面我们介绍和while串联 ...
- android PopupWindow 显示问题
设置可点击,其余控件也可点击,等操作 setOutsideTouchable(true); setBackgroundDrawable(new BitmapDrawable()); setTouc ...
- Netty源码学习笔记
1.ByteBuf
- sort+uniq
cat a b | sort | uniq > c # c 是a和b的合集 cat a b | sort | uniq -d > c # c 是a和b的交集 cat a b b | sor ...
- unigui 在单据中,某输入为必填项的 JS代码
给大家分享下在单据中,某输入为必填项,用红框标示的简单处理方法:UniSession.AddJS(UniEdit1.JSName+ '.el.setStyle({"border" ...
- Python使用MySQL数据库【转】
转自 Python使用MySQL数据库(新)[很详细][fetchall和fetchmany有啥区别呢?] - CSDN博客https://blog.csdn.net/u011350541/artic ...