theano scan optimization
selected from Theano Doc
Optimizing Scan performance
Minimizing Scan Usage
performan as much of the computation as possible outside of Scan. This may have the effect increasing memory usage but also reduce the overhead introduce by Scan.
Explicitly passing inputs of the inner function to scan
It's more efficient to explicitly pass parameter as non-sequence inputs.
Examples: Gibbs Sampling
Version One:
import theano
from theano import tensor as T
W = theano.shared(W_values) # we assume that ``W_values`` contains the
# initial values of your weight matrix
bvis = theano.shared(bvis_values)
bhid = theano.shared(bhid_values)
trng = T.shared_randomstreams.RandomStreams(1234)
def OneStep(vsample) :
hmean = T.nnet.sigmoid(theano.dot(vsample, W) + bhid)
hsample = trng.binomial(size=hmean.shape, n=1, p=hmean)
vmean = T.nnet.sigmoid(theano.dot(hsample, W.T) + bvis)
return trng.binomial(size=vsample.shape, n=1, p=vmean,
dtype=theano.config.floatX)
sample = theano.tensor.vector()
values, updates = theano.scan(OneStep, outputs_info=sample, n_steps=10)
gibbs10 = theano.function([sample], values[-1], updates=updates)
Version Two:
W = theano.shared(W_values) # we assume that ``W_values`` contains the
# initial values of your weight matrix
bvis = theano.shared(bvis_values)
bhid = theano.shared(bhid_values)
trng = T.shared_randomstreams.RandomStreams(1234)
# OneStep, with explicit use of the shared variables (W, bvis, bhid)
def OneStep(vsample, W, bvis, bhid):
hmean = T.nnet.sigmoid(theano.dot(vsample, W) + bhid)
hsample = trng.binomial(size=hmean.shape, n=1, p=hmean)
vmean = T.nnet.sigmoid(theano.dot(hsample, W.T) + bvis)
return trng.binomial(size=vsample.shape, n=1, p=vmean,
dtype=theano.config.floatX)
sample = theano.tensor.vector()
# The new scan, with the shared variables passed as non_sequences
values, updates = theano.scan(fn=OneStep,
outputs_info=sample,
non_sequences=[W, bvis, bhid],
n_steps=10)
gibbs10 = theano.function([sample], values[-1], updates=updates)
Deactivating garbage collecting in Scan
Deactivating garbage collecting in Scan can allow it to reuse memory between executins instead of always having to allocate new memory. Scan reuses memory between iterations of the same execution but frees the memory after the last iteration.
config.scan.allow_gc=False
Graph Optimizations
There are patterns that Theano can't optimize. the LSTM tutorial provides an example of optimization that theano can't perform. Instead of performing many matrix multiplications between matrix \(x_t\) and each of the shared msatrices \(W_i,W_c,W_f\) and \(W_o\), the matrixes \(W_{*}\) are merged into a single shared \(W\) and the graph performans a single larger matrix multiplication between \(W\) and \(x_t\). The resulting matrix is then sliced to obtain the results of that the small individial matrix multiplications by a single larger one and thus improves performance at the cost of a potentially higher memory usage.
theano scan optimization的更多相关文章
- theano中的scan用法
scan函数是theano中的循环函数,相当于for loop.在读别人的代码时第一次看到,有点迷糊,不知道输入.输出怎么定义,网上也很少有example,大多数都是相互转载同一篇.所以,还是要看官方 ...
- Theano学习-scan循环
\(1.Scan\) 通用的一般形式,可用于循环 减少和映射(对维数循环)是特殊的 \(scan\) 对输入序列进行 \(scan\) 操作,每一步都能得到一个输出 \(scan\) 能看到定义函数的 ...
- theano学习
import numpy import theano.tensor as T from theano import function x = T.dscalar('x') y = T.dscalar( ...
- LSTM 分类器笔记及Theano实现
相关讨论 http://tieba.baidu.com/p/3960350008 基于教程http://deeplearning.net/tutorial/lstm.html LSTM基本原理http ...
- 关于thenao.scan() fn函数参数的说明
theano.scan()原型: theano.scan( fn, sequences=None, outputs_info=None, non_sequences=None, n_steps=Non ...
- Theano学习-梯度计算
1. 计算梯度 创建一个函数 \(y\) ,并且计算关于其参数 \(x\) 的微分. 为了实现这一功能,将使用函数 \(T.grad\) . 例如:计算 \(x^2\) 关于参数 \(x\) 的梯度. ...
- IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO - 学习笔记
catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 ...
- theano安装问题
WARNING (theano.configdefaults): g++ not available, if using conda: `conda install m2w64-toolchain` ...
- theano使用
一 theano内置数据类型 只有thenao.shared()类型才有get_value()成员函数(返回numpy.ndarray)? 1. 惯常处理 x = T.matrix('x') # t ...
随机推荐
- JS函数声明的问题
三个例子 var a = 10; 2 function test(){ 3 a = 100; 4 console.log(a); 5 console.log(this.a); 6 var a; 7 c ...
- DS 工作室
如果你想租用我,QQ:26959368 价格可以详细谈哦, 1. 企业信息化过程中问题的免费咨询: 2. Office 365.Sharepoint Online .Azure 云的咨询服务. 3. ...
- Android HandlerThread 总结使用
转载请标明出处:http://www.cnblogs.com/zhaoyanjun/p/6062880.html 本文出自[赵彦军的博客] 前言 以前我在 [Android Handler.Loop ...
- html如何和CSS联系起来
CSS <Cascading Style Sheet>层叠样式表 .级联样式表,用于控制Web页面的外观: Html中使用CSS下面讲述2种常用方法: 1.连接式:可以实现CSS和Ht ...
- Android版本和API Level对应关系
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html Platform Version API ...
- Windows 批处理设置dns ,解决能上qq不能开网页
对于windows 7 @echo off netsh interface ip set dns "本地连接" static 114.114.114.114 primary net ...
- Atitit linux获取项目运行环境版本
Atitit linux获取项目运行环境版本 1.1. Nginx版本1 1.2. Php版本1 1.3. Mysql版本2 1.4. Redis版本2 1.1. Nginx版本 [root@iZ25 ...
- yii2实战教程之新手入门指南-简单博客管理系统
作者:白狼 出处:http://www.manks.top/document/easy_blog_manage_system.html 本文版权归作者,欢迎转载,但未经作者同意必须保留此段声明,且在文 ...
- mount常用挂载命令
挂接命令(mount) 首先,介绍一下挂接(mount)命令的使用方法,mount命令参数非常多,这里主要讲一下今天我们要用到的. 命令格式: mount [-t vfstype] [-o optio ...
- python-基本数据类型
/int整数/ 如: 18.73.84 每一个整数都具备如下功能: class int(object): """ int(x=0) -> int or long i ...