deconvolution讲解论文链接:https://arxiv.org/abs/1609.07009

关于conv和deconvoluton的另一个讲解链接:http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic

参考博客:https://blog.csdn.net/itleaks/article/details/80336825

反卷积作为一种upsample的方式在图像分割等领域获得了很大的应用,一般地,反卷积分为“转置卷积”和“微步卷积”,不过两种本质其实是一样的,只是实现时稍微有点不同;

一、转置卷积(Transposed Convolution):

二、微步卷积(Fractionally Strided Convolution):

这块可以参考论文里的讲解,讲的很细很好;

结论:“In conclusion, the deconvolution layer is the same as the convolution in LR with rd channel output where d is the spatial dimension of the data. ”,可参考下面这张图:

当然作者也说了,使用LR的图像做卷积比使用HR的图像做卷积具有更好的表达效果,解释如下:

所以,有的时候使用deconvolution获得HR并不必要,作者在论文的最后也给我们留下了一些有趣的问题:

反卷积(deconvolution)的更多相关文章

  1. 反卷积Deconvolution

    反卷积(转置卷积.空洞卷积(微步卷积))近几年用得较多,本篇博客主要是介绍一下反卷积,尤其是怎么计算反卷积(选择反卷积的相关参数) 图1 空洞卷积(微步卷积)的例子,其中下面的图是输入,上面的图是输出 ...

  2. 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv

    搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...

  3. feature map 大小以及反卷积的理解

    (1)边长的计算公式是:  output_h =(originalSize_h+padding*2-kernelSize_h)/stride +1 输入图片大小为200×200,依次经过一层卷积(ke ...

  4. Convolution Network及其变种(反卷积、扩展卷积、因果卷积、图卷积)

    今天,主要和大家分享一下最近研究的卷积网络和它的一些变种. 首先,介绍一下基础的卷积网络. 通过PPT上的这个经典的动态图片可以很好的理解卷积的过程.图中蓝色的大矩阵是我们的输入,黄色的小矩阵是卷积核 ...

  5. 学习Tensorflow,反卷积

    在深度学习网络结构中,各个层的类别可以分为这几种:卷积层,全连接层,relu层,pool层和反卷积层等.目前,在像素级估计和端对端学习问题中,全卷积网络展现了他的优势,里面有个很重要的层,将卷积后的f ...

  6. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  7. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

  8. 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?

    反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4.    ...

  9. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

随机推荐

  1. go config

    安装导入 go get github.com/astaxie/beego/config import "github.com/astaxie/beego/config" 使用 配置 ...

  2. 网络编程基础【day09】:socket实现文件发送(六)

    本节内容 1.概述 2.文件下载实现 3.MD5值校验 一.概述 我们如何利用socket去下载一个文件,整体思路是这样的: 读取文件名 检测文件是否存在 打开文件 检测文件大小 发送文件大小给客户端 ...

  3. Java基础之IO流学习总结

    Java流操作有关的类或接口: Java流类图结构: 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本质是数据传输,根据数据传输 ...

  4. CSS3 利用border-radius实现椭圆角

    效果如图: border-radius共有8个属性值,有四个角,每个角对应两个值(分别是x轴和y轴的值). border-radius: 0 20% 20% 0/0 50% 50% 0; /的左右两边 ...

  5. Hbase记录-shell脚本嵌入hbase shell命令

    第一种方式:hbase shell test.txt test.txt:list 第二种方式:<<EOF重定向输入 我们经常在shell脚本程序中用<<EOF重定向输入,将我们 ...

  6. mq【转】

    kafka解决了什么问题? mq的几个指标 1.消息堆积能力.两亿条1k大小消息体的消息发上来,积压一周不消费,机器哭不哭. 2.吞吐量.来个峰值,每秒两万,连续两小时,临时扩容扛不扛得住. 3.安全 ...

  7. SpringMVC的概念和图解

    1.概念 Spring MVC起步:慕课网视频 SpringMVC架构浅析:参考 Spring详解(一)------概述 Spring架构简单描述 2.图片

  8. [Android] Android v4包CompoundButtonCompatLollipop.class重复问题

    用 Butter Knife  8.8.1  导致v4包CompoundButtonCompatLollipop.class重复问题 详细错误如下: Error:Execution failed fo ...

  9. eventproxy 介绍这款好用的工具,前端事件式编程的思维

    前端事件式编程 <script src="eventproxy.js"></script> <script> // EventProxy此时是一 ...

  10. 【五】服务熔断、降级 —— Hystrix(豪猪)

    分布式系统面临的问题 复杂分布式体系结构中的应用程序有数十个依赖,每个依赖关系将在某些时候将不可避免地失败. 服务雪崩 多个微服务之间调用的时候,假设微服务A调用微服务B和微服务C,微服务 B和微服务 ...