原博文:传送门

最长递增子序列(Longest Increasing Subsequence)

下面我们简记为 LIS。

定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素。
注意d中元素是单调递增的,下面要用到这个性质。
首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];
否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需要更新长度为j的上升子序列的最末元素(使之为最小的)即 d[j] = a[i];
最终答案就是len
利用d的单调性,在查找j的时候可以二分查找,从而时间复杂度为nlogn。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

注意!!!这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN),于是算法的时间复杂度就降低到了O(NlogN)!

练习题目:POJ 2533

(转载)最长递增子序列 O(NlogN)算法的更多相关文章

  1. 最长递增子序列 O(NlogN)算法

    转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...

  2. 最长上升子序列O(nlogn)算法详解

    最长上升子序列 时间限制: 10 Sec   内存限制:128 MB 题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.我们想知道此时最长上升子 ...

  3. hdu 5773 最长递增子序列 (nlogn)+贪心

    The All-purpose Zero Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  4. 最长递增子序列(LIS)

    最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6 ...

  5. LIS 最长递增子序列

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  6. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  7. 最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现

    关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已 ...

  8. 【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))

    算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删 ...

  9. 算法实践--最长递增子序列(Longest Increasing Subsquence)

    什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5 ...

随机推荐

  1. PRML读书会第八章 Graphical Models(贝叶斯网络,马尔科夫随机场)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:52:10 今天的内容主要是: 1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示:2.图的概率推断in ...

  2. [PGM] I-map和D-separation

    之前在概率图模型对概率图模型做了简要的介绍.此处介绍有向图模型中几个常常提到的概念,之前参考的多为英文资料,本文参考的是<概率图模型-原理与技术的>中译版本.很新的书,纸质很好,翻译没有很 ...

  3. Zepto的天坑汇总

    前言 最近在做移动端开发,用的是zepto,发现他跟jquery比起来称之为天坑不足为过,但是由于项目本身原因,以及移动端速度要求的情况下,也只能继续用下去. 所以在这里做一下汇总 对img标签空sr ...

  4. JS 页面加载触发事件 document.ready和window.onload的区别

    document.ready和onload的区别——JavaScript文档加载完成事件页面加载完成有两种事件: 一是ready,表示文档结构已经加载完成(不包含图片等非文字媒体文件): 二是onlo ...

  5. learning to rank

    Learning to Rank入门小结 + 漫谈 Learning to Rank入门小结 Table of Contents 1 前言 2 LTR流程 3 训练数据的获取4 特征抽取 3.1 人工 ...

  6. Android其它新控件 (转)

    原文出处:http://blog.csdn.net/lavor_zl/article/details/51312715 Android其它新控件是指非Android大版本更新时提出的新控件,也非谷歌I ...

  7. SharedPrefernces使用实例讲解

    activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android&qu ...

  8. nginx安装配置+清缓存模块安装

    经过一段时间的使用,发现nginx在并发与负载能力方面确实优于apache,现在已经将大部分站点从apache转到了nginx了.以下是nginx的一些简单的安装配置. 环境 操作系统:CentOS. ...

  9. git diff命令

    1. 比较两次提交的差异 2. 两个分支之间的比较 3. 暂存区和版本库的比较

  10. 【SPOJ 7258】Lexicographical Substring Search

    http://www.spoj.com/problems/SUBLEX/ 好难啊. 建出后缀自动机,然后在后缀自动机的每个状态上记录通过这个状态能走到的不同子串的数量.该状态能走到的所有状态的f值的和 ...