Newton-Raphson算法简介及其R实现
本文简要介绍了Newton-Raphson方法及其R语言实现并给出几道练习题供参考使用。 下载PDF格式文档(Academia.edu)
- Newton-Raphson Method
Let $f(x)$ be a differentiable function and let $a_0$ be a guess for a solution to the equation $$f(x)=0$$ We can product a sequence of points $x=a_0, a_1, a_2, \dots $ via the recursive formula $$a_{n+1}=a_n-\frac{f(a_n)}{f'(a_n)}$$ that are successively better approximation of a solution to the equation $f(x)=0$. - R codes
There are 4 parameters in this function:
- f is the function you input.
- tol is the tolerance (default $1e-7$).
- x0 is the initial guess.
- N is the default number (100) of iterations.
The process will be end up until either the absolute difference between two adjacent approximations is less than tol, or the number of iterations reaches N.
- Examples
Generally speaking, the "guess" is important. More precisely, according to Intermediate Value Theorem we can find two values of which function value are larger and less than 0, respectively. Then choosing the one, which first derivative is larger than another, as the initial guess value in the iterative formula. This process will guarantee the convergence of roots. Let's see some examples.- Example 1
Approximate the fifth root of 7.
Solution:
Denote $f(x)=x^5-7$. It is easily to know that $f(1)=-6 < 0$ and $f(2)=25 > 0$. Additionally, $f'(1)=5 < f'(2)=80$, so we set the initial guess value $x_0=2$. By Newton-Raphson method we get the result is 1.47577316159. And $$f(1.47577316159)\approx 1.7763568394e-15$$ which is very close to 0. R codes is below:# Example 1
f = function(x){x^5 - 7}
h = 1e - 7
df.dx = function(x){(f(x + h) - f(x)) / h}
df.dx(1); df.dx(2)
# [1] 5.0000009999
# [1] 80.0000078272
app = newton(f, x0 = 2)
app
# [1] 1.68750003057 1.52264459615 1.47857137506 1.47578373325 1.47577316175
# [6] 1.47577316159
f(app[length(app)])
# [1] 1.7763568394e-15 - Example 2
The function $f(x)=x^5-5x^4+5x^2-6$ has a root between 1 and 5. Approximate it by Newton-Raphson method.
Solution:
We try to calculate some values first. $f(1)=-5, f(2)=-34, f(3)=-123, f(4)=-182, f(5)=119$, so there should be a root between 4 and 5. Since $f'(4)=40 < f'(5)=675$, hence $x_0=5$ is a proper initial guess value. By Newton-Raphson method we get the result is 4.79378454069 and $$f(4.79378454069)\approx -2.84217094304e-14$$ which is a desired approximation. R codes is below:# Example 2
f = function(x){x^5 - 5 * x^4 + 5 * x^2 - 6}
x = c(1 : 5)
f(x)
# [1] -5 -34 -123 -182 119
h = 1e-7
df.dx = function(x){(f(x + h) - f(x)) / h}
df.dx(4); df.dx(5)
# [1] 40.0000163836
# [1] 675.000053008
app = newton(f, x0 = 5)
app
# [1] 4.82370371755 4.79453028339 4.79378501861 4.79378454069 4.79378454069
f(app[length(app)])
# [1] -2.84217094304e-14 - Example 3
A rectangular piece of cardboard of dimensions $8\times 17$ is used to make an open-top box by cutting out a small square of side $x$ from each corner and bending up the sides. Find a value of $x$ for which the box has volume 100.
Solution:
Firstly, building the model. $V(x)=x(8-2x)(17-2x)=100$, that is, we want to find the root of equation $$f(x)=x(8-2x)(17-2x)-100=0\Leftrightarrow f(x)=4x^3-50x^2+136x-100=0$$ We know that $0 < x < 4$ and hence try to calculate some non-negative integers: $$f(0)=-100, f(1)=-10, f(2)=4, f(3)=-34, f(4)=-100$$ Note that there are two intervals may have roots: $(1, 2)\cup (2,3)$. Since $$f'(1)=48 > f'(2)=-16 > f'(3)=-56$$ so we set the initial guess values $x_0=1$ and $x'_0=2$ (i.e. there are two separate iteration procedures). By using Newton-Raphson method we obtain the result are 11.26063715644 and 2.19191572127 respectively. Both of them are quite accurate. R codes is below:# Example 3
f = function(x){4 * x^3 - 50 * x^2 + 136 * x - 100}
x = c(0 : 4)
f(x)
# [1] -100 -10 4 -34 -100
h = 1e-7
df.dx = function(x){(f(x + h) - f(x)) / h}
df.dx(1); df.dx(2); df.dx(3)
# [1] 47.9999962977
# [1] -16.0000024607
# [1] -56.0000012229
app1 = newton(f, x0 = 1)
app2 = newton(f, x0 = 2)
app1; app2
# [1] 1.20833334940 1.25768359879 1.26062673622 1.26063715631 1.26063715644
# [1] 2.24999996155 2.19469026652 2.19192282154 2.19191572132 2.19191572127
f(app1[length(app1)]); f(app2[length(app2)])
# [1] 2.84217094304e-14
# [1] -2.84217094304e-14
- Example 1
Newton-Raphson算法简介及其R实现的更多相关文章
- 分类算法简介 基于R
最近的关键字:分类算法,outlier detection, machine learning 简介: 此文将 k-means,decision tree,random forest,SVM(supp ...
- LARS 最小角回归算法简介
最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非 ...
- webrtc 的回声抵消(aec、aecm)算法简介(转)
webrtc 的回声抵消(aec.aecm)算法简介 webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) ...
- AES算法简介
AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES ...
- 排列熵算法简介及c#实现
一. 排列熵算法简介: 排列熵算法(Permutation Entroy)为度量时间序列复杂性的一种方法,算法描述如下: 设一维时间序列: 采用相空间重构延迟坐标法对X中任一元素x(i)进行相空间 ...
- <算法图解>读书笔记:第1章 算法简介
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(l ...
- AI - 机器学习常见算法简介(Common Algorithms)
机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应 ...
- STL所有算法简介 (转) http://www.cnblogs.com/yuehui/archive/2012/06/19/2554300.html
STL所有算法简介 STL中的所有算法(70个) 参考自:http://www.cppblog.com/mzty/archive/2007/03/14/19819.htmlhttp://hi.baid ...
- PageRank 算法简介
有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank ...
随机推荐
- Linux进程间通信之共享内存
一,共享内存 内核管理一片物理内存,允许不同的进程同时映射,多个进程可以映射同一块内存,被多个进程同时映射的物理内存,即共享内存. 映射物理内存叫挂接,用完以后解除映射叫脱接. 1,共享内存的特点 ...
- 浅析WPhone、Android的Back与Home键
浅析WPhone.Android的Back与Home键 背景 本人一直在用诺基亚手机(目前是Nokia 925,Windows Phonre 8.1),在界面设计.应用多样性等方面没少受身边Andro ...
- [BZOJ1924][Sdoi2010]所托门王的宝藏(缩点+DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1924 分析: 首先把传送门作为点建图 这个数据很弱的,没有那种卡你的. 把每行的情况存 ...
- SQL复杂查询和视图
子查询 现实中,很多情况下需要进行下述条件判断 某一元素是否是某一集合成员 某一集合是否包含另一集合 测试集合是否为空 测试集合是否存在另一元组 子查询是出现在WHERE子句中的SELECT语句被称为 ...
- 获取用户请求过来的URL
document.referer 一段JS搞定
- 局域网IP段
局域网的出现,一方面解决内部安全问题,另一个方面解决ipv4不够用的问题.局域网方便维护和管理,目前局域网Ip地址段为 局域网地址范围分三类: C类:192.168.0.0-192.168.255.2 ...
- 【CSS】 background
background: #22b4ff //背景色 url("http://images.cnblogs.com/cnblogs_com/oiliu/529256/o_titleIMG.jp ...
- “Ceph浅析”系列之二——Ceph概况
本文将对Ceph的基本情况进行概要介绍,以期读者能够在不涉及技术细节的情况下对Ceph建立一个初步印象. 1. 什么是Ceph? Ceph的官方网站Ceph.com上用如下这句话简明扼要地定义了Cep ...
- Ubuntu 14.04 安装 JDK 8,ubuntu14.04
第一步,下载Linux版JDK 可以通过访问Oracle官网下载,或者直接通过命令行下载. lxh@ubuntu:~$ wget -c http://download.oracle.com/otn-p ...
- iOS开发--QQ音乐练习,歌词的展示,歌词的滚动,歌词的颜色变化
一.歌词的展示 -- 首先歌词是在scrollView上,scrollView的大小是两个屏幕的宽度 scrollView滚动修改透明度的代码 ...