Newton-Raphson算法简介及其R实现
本文简要介绍了Newton-Raphson方法及其R语言实现并给出几道练习题供参考使用。 下载PDF格式文档(Academia.edu)
- Newton-Raphson Method
Let $f(x)$ be a differentiable function and let $a_0$ be a guess for a solution to the equation $$f(x)=0$$ We can product a sequence of points $x=a_0, a_1, a_2, \dots $ via the recursive formula $$a_{n+1}=a_n-\frac{f(a_n)}{f'(a_n)}$$ that are successively better approximation of a solution to the equation $f(x)=0$. - R codes
There are 4 parameters in this function:
- f is the function you input.
- tol is the tolerance (default $1e-7$).
- x0 is the initial guess.
- N is the default number (100) of iterations.
The process will be end up until either the absolute difference between two adjacent approximations is less than tol, or the number of iterations reaches N.
- Examples
Generally speaking, the "guess" is important. More precisely, according to Intermediate Value Theorem we can find two values of which function value are larger and less than 0, respectively. Then choosing the one, which first derivative is larger than another, as the initial guess value in the iterative formula. This process will guarantee the convergence of roots. Let's see some examples.- Example 1
Approximate the fifth root of 7.
Solution:
Denote $f(x)=x^5-7$. It is easily to know that $f(1)=-6 < 0$ and $f(2)=25 > 0$. Additionally, $f'(1)=5 < f'(2)=80$, so we set the initial guess value $x_0=2$. By Newton-Raphson method we get the result is 1.47577316159. And $$f(1.47577316159)\approx 1.7763568394e-15$$ which is very close to 0. R codes is below:# Example 1
f = function(x){x^5 - 7}
h = 1e - 7
df.dx = function(x){(f(x + h) - f(x)) / h}
df.dx(1); df.dx(2)
# [1] 5.0000009999
# [1] 80.0000078272
app = newton(f, x0 = 2)
app
# [1] 1.68750003057 1.52264459615 1.47857137506 1.47578373325 1.47577316175
# [6] 1.47577316159
f(app[length(app)])
# [1] 1.7763568394e-15 - Example 2
The function $f(x)=x^5-5x^4+5x^2-6$ has a root between 1 and 5. Approximate it by Newton-Raphson method.
Solution:
We try to calculate some values first. $f(1)=-5, f(2)=-34, f(3)=-123, f(4)=-182, f(5)=119$, so there should be a root between 4 and 5. Since $f'(4)=40 < f'(5)=675$, hence $x_0=5$ is a proper initial guess value. By Newton-Raphson method we get the result is 4.79378454069 and $$f(4.79378454069)\approx -2.84217094304e-14$$ which is a desired approximation. R codes is below:# Example 2
f = function(x){x^5 - 5 * x^4 + 5 * x^2 - 6}
x = c(1 : 5)
f(x)
# [1] -5 -34 -123 -182 119
h = 1e-7
df.dx = function(x){(f(x + h) - f(x)) / h}
df.dx(4); df.dx(5)
# [1] 40.0000163836
# [1] 675.000053008
app = newton(f, x0 = 5)
app
# [1] 4.82370371755 4.79453028339 4.79378501861 4.79378454069 4.79378454069
f(app[length(app)])
# [1] -2.84217094304e-14 - Example 3
A rectangular piece of cardboard of dimensions $8\times 17$ is used to make an open-top box by cutting out a small square of side $x$ from each corner and bending up the sides. Find a value of $x$ for which the box has volume 100.
Solution:
Firstly, building the model. $V(x)=x(8-2x)(17-2x)=100$, that is, we want to find the root of equation $$f(x)=x(8-2x)(17-2x)-100=0\Leftrightarrow f(x)=4x^3-50x^2+136x-100=0$$ We know that $0 < x < 4$ and hence try to calculate some non-negative integers: $$f(0)=-100, f(1)=-10, f(2)=4, f(3)=-34, f(4)=-100$$ Note that there are two intervals may have roots: $(1, 2)\cup (2,3)$. Since $$f'(1)=48 > f'(2)=-16 > f'(3)=-56$$ so we set the initial guess values $x_0=1$ and $x'_0=2$ (i.e. there are two separate iteration procedures). By using Newton-Raphson method we obtain the result are 11.26063715644 and 2.19191572127 respectively. Both of them are quite accurate. R codes is below:# Example 3
f = function(x){4 * x^3 - 50 * x^2 + 136 * x - 100}
x = c(0 : 4)
f(x)
# [1] -100 -10 4 -34 -100
h = 1e-7
df.dx = function(x){(f(x + h) - f(x)) / h}
df.dx(1); df.dx(2); df.dx(3)
# [1] 47.9999962977
# [1] -16.0000024607
# [1] -56.0000012229
app1 = newton(f, x0 = 1)
app2 = newton(f, x0 = 2)
app1; app2
# [1] 1.20833334940 1.25768359879 1.26062673622 1.26063715631 1.26063715644
# [1] 2.24999996155 2.19469026652 2.19192282154 2.19191572132 2.19191572127
f(app1[length(app1)]); f(app2[length(app2)])
# [1] 2.84217094304e-14
# [1] -2.84217094304e-14
- Example 1
Newton-Raphson算法简介及其R实现的更多相关文章
- 分类算法简介 基于R
最近的关键字:分类算法,outlier detection, machine learning 简介: 此文将 k-means,decision tree,random forest,SVM(supp ...
- LARS 最小角回归算法简介
最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非 ...
- webrtc 的回声抵消(aec、aecm)算法简介(转)
webrtc 的回声抵消(aec.aecm)算法简介 webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) ...
- AES算法简介
AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES ...
- 排列熵算法简介及c#实现
一. 排列熵算法简介: 排列熵算法(Permutation Entroy)为度量时间序列复杂性的一种方法,算法描述如下: 设一维时间序列: 采用相空间重构延迟坐标法对X中任一元素x(i)进行相空间 ...
- <算法图解>读书笔记:第1章 算法简介
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(l ...
- AI - 机器学习常见算法简介(Common Algorithms)
机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应 ...
- STL所有算法简介 (转) http://www.cnblogs.com/yuehui/archive/2012/06/19/2554300.html
STL所有算法简介 STL中的所有算法(70个) 参考自:http://www.cppblog.com/mzty/archive/2007/03/14/19819.htmlhttp://hi.baid ...
- PageRank 算法简介
有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank ...
随机推荐
- PHP Date ( I need to use)
本文记录项目中用到的 PHP Date 相关,备忘. 日期格式约定为 xx-xx-xx 格式(字符串),例如 2016-03-09. xx-xx-xx -> 时间戳 $date = " ...
- 《深入理解Spark:核心思想与源码分析》(第2章)
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...
- Centos下编译JDK
因为OpenJDK是开源的,这里使用openJDK进行编译联系 环境要求 Centos6.7 64位 openjdk-7u40-fcs-src-b43-26_aug_2013.zip bootstra ...
- android开发------Activity生命周期
这几天工作比较忙,基本没有什么时间更新播客了. 趁着今晚有点时间,我们来简单说一下什么是Activity生命周期和它们各阶段的特征 什么是生命周期 在还没有接触android开发的时候,听到有人说Ac ...
- 使用Servlet实现下载文件的功能
在前台有一个下载链接,比如 <a href="DownLoadServlet">下载</a> <br/> 使用Servlet实现下载: impo ...
- iOS开发中的错误整理,AFN框架和MJRefresh框架搭配应该注意的问题
注意问题一:每次请求之前先将之前的请求取消 注意问题二:请求成功之后要判断footer或者header的显示状态 首次下拉刷新,要判断是否已经全部 ...
- Boundary Representations
用所有属于boundary的点来表示boundary, 有两个主要的缺点, 一是数据量大, 二是对噪声敏感. 用boundary的一些representation而非精确的boundary本身来表示b ...
- WPF 资源字典【转】
使用好处:存储需要被本地话的内容(错误消息字符串等,实现软编码),减少重复的代码,重用样式,实现多个项目之间的共享资源;修改一个地方所有引用的地方都会被修改,方便统一风格;使用方法,归纳起来主要有下面 ...
- mysql查询所有记录,并去掉重复的记录
select * from tablename group by name;如果是select * from tablename group by name,age;那么查询的是满足name和age都 ...
- ivy,ivyde插件-eclipse
官方共享更新磁盘下载 http://www.apache.org/dist/ant/ivyde/updatesite/ http://ant.apache.org/ivy/download.cgi 简 ...