本文简要介绍了Newton-Raphson方法及其R语言实现并给出几道练习题供参考使用。 下载PDF格式文档(Academia.edu)

  • Newton-Raphson Method
    Let $f(x)$ be a differentiable function and let $a_0$ be a guess for a solution to the equation $$f(x)=0$$ We can product a sequence of points $x=a_0, a_1, a_2, \dots $ via the recursive formula $$a_{n+1}=a_n-\frac{f(a_n)}{f'(a_n)}$$ that are successively better approximation of a solution to the equation $f(x)=0$.
  • R codes

    There are 4 parameters in this function:

    • f is the function you input.
    • tol is the tolerance (default $1e-7$).
    • x0 is the initial guess.
    • N is the default number (100) of iterations.

    The process will be end up until either the absolute difference between two adjacent approximations is less than tol, or the number of iterations reaches N.

  • Examples
    Generally speaking, the "guess" is important. More precisely, according to Intermediate Value Theorem we can find two values of which function value are larger and less than 0, respectively. Then choosing the one, which first derivative is larger than another, as the initial guess value in the iterative formula. This process will guarantee the convergence of roots. Let's see some examples.
    • Example 1
      Approximate the fifth root of 7.
      Solution:
      Denote $f(x)=x^5-7$. It is easily to know that $f(1)=-6 < 0$ and $f(2)=25 > 0$. Additionally, $f'(1)=5 < f'(2)=80$, so we set the initial guess value $x_0=2$. By Newton-Raphson method we get the result is 1.47577316159. And $$f(1.47577316159)\approx 1.7763568394e-15$$ which is very close to 0. R codes is below:

      # Example 1
      f = function(x){x^5 - 7}
      h = 1e - 7
      df.dx = function(x){(f(x + h) - f(x)) / h}
      df.dx(1); df.dx(2)
      # [1] 5.0000009999
      # [1] 80.0000078272
      app = newton(f, x0 = 2)
      app
      # [1] 1.68750003057 1.52264459615 1.47857137506 1.47578373325 1.47577316175
      # [6] 1.47577316159
      f(app[length(app)])
      # [1] 1.7763568394e-15
    • Example 2
      The function $f(x)=x^5-5x^4+5x^2-6$ has a root between 1 and 5. Approximate it by Newton-Raphson method.
      Solution:
      We try to calculate some values first. $f(1)=-5, f(2)=-34, f(3)=-123, f(4)=-182, f(5)=119$, so there should be a root between 4 and 5. Since $f'(4)=40 < f'(5)=675$, hence $x_0=5$ is a proper initial guess value. By Newton-Raphson method we get the result is 4.79378454069 and $$f(4.79378454069)\approx -2.84217094304e-14$$ which is a desired approximation. R codes is below:
      # Example 2
      f = function(x){x^5 - 5 * x^4 + 5 * x^2 - 6}
      x = c(1 : 5)
      f(x)
      # [1] -5 -34 -123 -182 119
      h = 1e-7
      df.dx = function(x){(f(x + h) - f(x)) / h}
      df.dx(4); df.dx(5)
      # [1] 40.0000163836
      # [1] 675.000053008
      app = newton(f, x0 = 5)
      app
      # [1] 4.82370371755 4.79453028339 4.79378501861 4.79378454069 4.79378454069
      f(app[length(app)])
      # [1] -2.84217094304e-14
    • Example 3
      A rectangular piece of cardboard of dimensions $8\times 17$ is used to make an open-top box by cutting out a small square of side $x$ from each corner and bending up the sides. Find a value of $x$ for which the box has volume 100.
      Solution:
      Firstly, building the model. $V(x)=x(8-2x)(17-2x)=100$, that is, we want to find the root of equation $$f(x)=x(8-2x)(17-2x)-100=0\Leftrightarrow f(x)=4x^3-50x^2+136x-100=0$$ We know that $0 < x < 4$ and hence try to calculate some non-negative integers: $$f(0)=-100, f(1)=-10, f(2)=4, f(3)=-34, f(4)=-100$$ Note that there are two intervals may have roots: $(1, 2)\cup (2,3)$. Since $$f'(1)=48 > f'(2)=-16 > f'(3)=-56$$ so we set the initial guess values $x_0=1$ and $x'_0=2$ (i.e. there are two separate iteration procedures). By using Newton-Raphson method we obtain the result are 11.26063715644 and 2.19191572127 respectively. Both of them are quite accurate. R codes is below:
      # Example 3
      f = function(x){4 * x^3 - 50 * x^2 + 136 * x - 100}
      x = c(0 : 4)
      f(x)
      # [1] -100 -10 4 -34 -100
      h = 1e-7
      df.dx = function(x){(f(x + h) - f(x)) / h}
      df.dx(1); df.dx(2); df.dx(3)
      # [1] 47.9999962977
      # [1] -16.0000024607
      # [1] -56.0000012229
      app1 = newton(f, x0 = 1)
      app2 = newton(f, x0 = 2)
      app1; app2
      # [1] 1.20833334940 1.25768359879 1.26062673622 1.26063715631 1.26063715644
      # [1] 2.24999996155 2.19469026652 2.19192282154 2.19191572132 2.19191572127
      f(app1[length(app1)]); f(app2[length(app2)])
      # [1] 2.84217094304e-14
      # [1] -2.84217094304e-14

Newton-Raphson算法简介及其R实现的更多相关文章

  1. 分类算法简介 基于R

    最近的关键字:分类算法,outlier detection, machine learning 简介: 此文将 k-means,decision tree,random forest,SVM(supp ...

  2. LARS 最小角回归算法简介

    最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非 ...

  3. webrtc 的回声抵消(aec、aecm)算法简介(转)

    webrtc 的回声抵消(aec.aecm)算法简介        webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) ...

  4. AES算法简介

    AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES ...

  5. 排列熵算法简介及c#实现

    一.   排列熵算法简介: 排列熵算法(Permutation Entroy)为度量时间序列复杂性的一种方法,算法描述如下: 设一维时间序列: 采用相空间重构延迟坐标法对X中任一元素x(i)进行相空间 ...

  6. <算法图解>读书笔记:第1章 算法简介

    阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(l ...

  7. AI - 机器学习常见算法简介(Common Algorithms)

    机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应 ...

  8. STL所有算法简介 (转) http://www.cnblogs.com/yuehui/archive/2012/06/19/2554300.html

    STL所有算法简介 STL中的所有算法(70个) 参考自:http://www.cppblog.com/mzty/archive/2007/03/14/19819.htmlhttp://hi.baid ...

  9. PageRank 算法简介

    有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank ...

随机推荐

  1. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  2. .NET MVC AjaxHelper

    我们首先必须开启 非入侵式 Ajax:导入Jquery和unobtrusiveAjax文件 已经默认开启客户端验证 和 非侵入式js <add key="ClientValidatio ...

  3. <实训|第十天>从底层解释一下U盘内存为什么变小的原因附数据恢复的基本原理

    [root@localhost~]#序言 我们平时不论是买一个U盘硬盘,或者自己在电脑上创建一个分区,大小总是比我们创建的要小一点,有些人会说,这个正常啊,是因为厂家规定的1M=1000k,真正的是1 ...

  4. 吉特仓库管理系统-.NET4.0环境安装不上问题解决

    在给客户实施软件的过程中要,要安装.NET 4.0 环境,而且是在XP的系统上. 目前的客户中仍然有大量使用XP的机器,而且极为不稳定,在安装吉特仓库管理系统客户端的时候出现了如下问题: 产品: Mi ...

  5. ModernUI教程:MEF应用向导

    本文主要说明在Modern UI框架下使用MEF的必要步骤,关于MEF请自行脑补. MEF-INTO-MUI实例代码下载: MefMuiApp.zip 1:创建一个导出属性 ModernFrame用来 ...

  6. 记一次在Linux上面启动部署在tomcat服务器的程序

    前提:Linux系统已安装好jre环境 1.文件结构: 文件说明: 部署文件包含以下文件:1.apache-tomcat-7  程序运行的应用服务器tomcat包含: war包:apache-tomc ...

  7. myeclipse下java文件乱码问题解决

    中文乱码是因为编码格式不一致导致的.1.进入Eclipse,导入一个项目工程,如果项目文件的编码与你的工具编码不一致,将会造成乱码.2.如果要使插件开发应用能有更好的国际化支持,能够最大程度的支持中文 ...

  8. java中的数据结构 --- 集合

    集合类在Java.util包中!  在java中常用的是Set,Map,和List. 容器和迭代器 链表 集 映射

  9. Android快速开发框架LoonAndroid (转)

    1.源码简介: 主要有以下模块: (1) 自动注入框架(只需要继承框架内的application既可) (2) 图片加载框架(多重缓存,自动回收,最大限度保证内存的安全性) (3) 网络请求模块(继承 ...

  10. 网络流HDU 2883

    建图           源点  ->     每个人  ->           每段时间      ->      汇点 时间要离散化一下 分成一些时间段 权           ...