POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480
题目大意:求Σgcd(i,n)。
解题思路:
如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n)。
如果i与n不互质,那么只要枚举n的全部约数,对于一个约数d,若使gcd(i/d,n/d)互质,这部分的gcd和=d*欧拉函数phi(n/d).
不断暴力从小到大枚举约数,这样就把gcd和切成好多个部分,累加起来就行了。
其实还可以公式化简,不过实在太繁琐了。可以参考金海峰神的解释。
由于要求好多欧拉函数,每次都分解质因数法必然TLE,这里所以采用O(√n)求单个欧拉函数+Hash记录打表的方法。
#include "cstdio"
#include "vector"
#include "map"
using namespace std;
#define LL long long
vector<LL> divisor(LL n)
{
vector<LL> res;
for(LL i=;i*i<=n;i++)
if(n%i==)
{
res.push_back(i);
if(i!=n/i) res.push_back(n/i);
}
return res;
}
LL eular(LL n)
{
LL ans=n;
for(LL i=;i*i<=n;i++)
{
if(n%i==)
{
ans-=ans/i;
while(n%i==) n/=i;
}
}
if(n>) ans-=ans/n;
return ans;
}
int main()
{
LL n;
map<LL,LL> table;
while(scanf("%I64d",&n)!=EOF)
{
LL ans=;
vector<LL> div=divisor(n);
for(int i=;i<div.size();i++)
{
LL e;
if(!table.count(n/div[i])) {table[n/div[i]]=eular(n/div[i]);e=table[n/div[i]];}
else e=table[n/div[i]];
ans+=(div[i]*e);
}
printf("%I64d\n",ans);
}
}
13626576 | neopenx | 2480 | Accepted | 556K | 360MS | C++ | 1121B | 2014-11-13 19:24:55 |
POJ 2480 (约数+欧拉函数)的更多相关文章
- poj 2480 (欧拉函数应用)
点击打开链接 //求SUM(gcd(i,n), 1<=i<=n) /* g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1) 所以gcd(i,n ...
- Poj 2478-Farey Sequence 欧拉函数,素数,线性筛
Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14291 Accepted: 5647 D ...
- [学习笔记]约数&欧拉函数
约数 一.概念 约数,又称因数.整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a.a称为b的倍数,b称为a的约数. 二.性质 1.整数唯一分解 1)定义 对 ...
- POJ 2407 Relatives(欧拉函数)
题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #includ ...
- poj 2773 利用欧拉函数求互质数
题意:找到与n互质的第 k个数 开始一看n是1e6 敲了个暴力结果tle了,后来发现k达到了 1e8 所以需要用到欧拉函数. 我们设小于n的 ,与n互质的数为 (a1,a2,a3.......a(p ...
- POJ 2407 Relatives 欧拉函数题解
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- poj 2154 Color 欧拉函数优化的ploya计数
枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...
- poj 2480 Longge's problem [ 欧拉函数 ]
传送门 Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7327 Accepted: 2 ...
- 【POJ 2480】Longge's problem(欧拉函数)
题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...
随机推荐
- 验证码的种类与实现 C#封装类 - .NET MVC WEBFORM
验证码方式 1.随机字母或者数字,纯文本验证码 这种非常容易破解 ,市场上有大量的现成接口或者工具,背景越复杂难度越高. 2.题库验证码 要破解这种验证码,需要人工收集题库才可以破解,可以免疫不是专门 ...
- securecrt 用心跳保持连接
选项->会话->终端->发送协议NO-OP(P)
- Validform 学习笔记---基础知识整理
面对表单的验证,自己写大量的js毕竟不是一个明智的做法.不仅仅是代码很长而且不便于梳理.Validform就是一款开源的第三方验证js的控件,通过添加相应的js以及css能够有效的验证表单,维护起来也 ...
- 在SSIS包中的事务处理
在处理SSIS包的数据ETL操作过程中,我们经常遇到的一个问题就是一系列步骤在运行的过程中,如果中间的一个步骤失败了,那么我们就需要清理前面已经运行过的步骤所产生的数据或者结果,这往往是一个很头疼的过 ...
- PHP商品秒杀计时实现(解决大流量方案)
PHP商品秒杀功能我们多半以整点或时间点为例子,这样对于php来说处理不复杂,但有一个问题就是如果流量大要如何来处理,下面我们一起来看看解决办法. 要求要有小时分钟秒的实时倒计时的显示,用户端修改日期 ...
- 进程控制理论,王明学learn
进程控制理论 一.进程 进程是一个具有一定独立功能程序的一次运行活动. 1.1进程特点 1.动态性:进程的实质是程序的一次执行过程,进程是动态产生,动态消亡的 2.并发性:任何进程都可以同其他进程一起 ...
- 第十七篇:使用窗口的cache属性加速SOUI的渲染
内容渲染速度是决定一个UI成败的关键.无论UI做得多华丽,没有速度都没有意义. 在MFC,WTL等开发框架下,每个控件都是一个窗口,窗口只需要画前景,背景.因为窗口之间的内容不需要做混合,一个子窗口的 ...
- 驱动中获取PsActiveProcessHead变量地址的五种方法也可以获取KdpDebuggerDataListHead
PsActiveProcessHead的定义: 在windows系统中,所有的活动进程都是连在一起的,构成一个双链表,表头是全局变量PsActiveProcessHead,当一个进程被创建时,其Act ...
- SecureCRT上传和下载文件(下载默认目录)
SecureCR 下的文件传输协议有ASCII .Xmodem .Ymodem .Zmodem ASCII:这是最快的传输协议,但只能传送文本文件. Xmodem:这种古老的传输协议速度较慢,但由于使 ...
- Loadrunner中参数化实战(6)-Random+Each occurrence
参数化数据30条: 脚本如下,演示登录,投资,退出操作是,打印手机号: 首先验证Vugen中迭代: Random+Each occurrence 设置迭代4次Action 结果如下: