POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480
题目大意:求Σgcd(i,n)。
解题思路:
如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n)。
如果i与n不互质,那么只要枚举n的全部约数,对于一个约数d,若使gcd(i/d,n/d)互质,这部分的gcd和=d*欧拉函数phi(n/d).
不断暴力从小到大枚举约数,这样就把gcd和切成好多个部分,累加起来就行了。
其实还可以公式化简,不过实在太繁琐了。可以参考金海峰神的解释。
由于要求好多欧拉函数,每次都分解质因数法必然TLE,这里所以采用O(√n)求单个欧拉函数+Hash记录打表的方法。
#include "cstdio"
#include "vector"
#include "map"
using namespace std;
#define LL long long
vector<LL> divisor(LL n)
{
vector<LL> res;
for(LL i=;i*i<=n;i++)
if(n%i==)
{
res.push_back(i);
if(i!=n/i) res.push_back(n/i);
}
return res;
}
LL eular(LL n)
{
LL ans=n;
for(LL i=;i*i<=n;i++)
{
if(n%i==)
{
ans-=ans/i;
while(n%i==) n/=i;
}
}
if(n>) ans-=ans/n;
return ans;
}
int main()
{
LL n;
map<LL,LL> table;
while(scanf("%I64d",&n)!=EOF)
{
LL ans=;
vector<LL> div=divisor(n);
for(int i=;i<div.size();i++)
{
LL e;
if(!table.count(n/div[i])) {table[n/div[i]]=eular(n/div[i]);e=table[n/div[i]];}
else e=table[n/div[i]];
ans+=(div[i]*e);
}
printf("%I64d\n",ans);
}
}
| 13626576 | neopenx | 2480 | Accepted | 556K | 360MS | C++ | 1121B | 2014-11-13 19:24:55 |
POJ 2480 (约数+欧拉函数)的更多相关文章
- poj 2480 (欧拉函数应用)
点击打开链接 //求SUM(gcd(i,n), 1<=i<=n) /* g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1) 所以gcd(i,n ...
- Poj 2478-Farey Sequence 欧拉函数,素数,线性筛
Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14291 Accepted: 5647 D ...
- [学习笔记]约数&欧拉函数
约数 一.概念 约数,又称因数.整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a.a称为b的倍数,b称为a的约数. 二.性质 1.整数唯一分解 1)定义 对 ...
- POJ 2407 Relatives(欧拉函数)
题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #includ ...
- poj 2773 利用欧拉函数求互质数
题意:找到与n互质的第 k个数 开始一看n是1e6 敲了个暴力结果tle了,后来发现k达到了 1e8 所以需要用到欧拉函数. 我们设小于n的 ,与n互质的数为 (a1,a2,a3.......a(p ...
- POJ 2407 Relatives 欧拉函数题解
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- poj 2154 Color 欧拉函数优化的ploya计数
枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...
- poj 2480 Longge's problem [ 欧拉函数 ]
传送门 Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7327 Accepted: 2 ...
- 【POJ 2480】Longge's problem(欧拉函数)
题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...
随机推荐
- 使用C与C++混合编程封装UDP协议
引入头文件,导入lib文件 #include <stdio.h> #include <stdlib.h> #include <string.h> #include ...
- hdu1014
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 //hdu1014 0ms #include<stdio.h> #include&l ...
- localStorage的使用
HTML5中提供了localStorage对象可以将数据长期保存在客户端,直到人为清除. localStorage提供了几个方法: 1.存储:localStorage.setItem(key,valu ...
- securecrt 用心跳保持连接
选项->会话->终端->发送协议NO-OP(P)
- OID View
http://oid-info.com/get/1.3.6.1.2.1.17.1.4.1.2
- Pyqt 打包资源文件
用打包工具将做好的Pyqt程序打包成exe后发现引用的资源图片都显示不了? 是否遇到了和我一样的问题呢.google之后找到了方法,一种方法是在程序中引用外部资源,另外一种方法是将资源文件转换为py文 ...
- hdu 1075:What Are You Talking About(字典树,经典题,字典翻译)
What Are You Talking About Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/204800 K ...
- hdu 4010 动态树 @
kuangbin模板题,看起来十分高大上 /* *********************************************** Author :kuangbin Created Tim ...
- Understanding Execution Governors and Limits
在编写Salesforce后台代码的时候,如果数据量比较大,或者需要与数据库的交互比较频繁的话,那么会抛出一些限制的异常,来提示你让你做进一步的修改. 有这些限制实质上是跟Salesforce是一个云 ...
- cocos2dx游戏开发——微信打飞机学习笔记(三)——WelcomeScene的搭建
一.场景与层的关系: cocos2dx的框架可以说主要由导演,场景,层,精灵来构成: 1.其中导演,意如其名,就是操控整个游戏的一个单例,管理着整个游戏. 2.场景就像电影的一幕剧情,所以说,懂得如何 ...