将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场。该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化。那么当用户拖拽网格上的控制点集时,网格形变问题即变为求解以下式子:

  根据变分法,上式最小化即求解泊松方程:

其中Φ为待求的网格形变后坐标,w为网格形变后的梯度场。

  上式可以进一步表示为求解稀疏线性方程组:

其中L为网格的拉普拉斯算子,b为梯度场w在网格顶点处的散度值。

  问题的关键是如何得到网格形变后的梯度场w,文章[Yu et al. 2004]提到其是通过由控制点集变换的加权运算得到,并且提出了几种不同的加权方式(线性加权,高斯加权等)。另外文章[Zayer et al. 2005]中提到可以在网格内构建一个调和场作为加权系数。

1.离散梯度算子定义:

      假设f是一个分片线性函数,在网格的每个三角片{xi,xj,xk}的顶点处有f(xi)=fi,f(xj)=fj,f(xk)=fk,通过线性插值可以知道f在三角片上每一点处的值为:

  这样f的梯度如下:

其中基函数Φi,Φj,Φk满足Φijk=1,那么它们梯度之和▽Φi+▽Φj+▽Φk=0。所以f的梯度可以写成如下形式:

  经简单计算可以求得▽Φi的表达式是,同样也可以写出▽Φj、▽Φk的表达式,其中⊥表示将向量逆时针旋转90度,A表示三角片的面积。

2.离散散度算子定义:

       设向量值函数w:S→R3,S表示网格,w表示在每个三角片上的向量,那么w在顶点xi处的散度可以定义为:

其中T(xi)表示顶点xi的1环邻域三角片,AT表示三角片T的面积。

3.离散Laplace算子定义:

       将梯度算子表达式代入散度算子表达式可以得到顶点xi处的Laplace算子如下形式:

其中N(xi)表示顶点xi的1环邻域点。

效果:

本文为原创,转载请注明出处:http://www.cnblogs.com/shushen

参考文献:

[1] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. "Mesh Editing with Poisson-Based Gradient Field Manipulation." ACM Transactions on Graphics (Proc. SIGGRAPH) 23:3 (2004), 644-51.

[2] R. Zayer, C. Rossl, Z. Karni, and H.-P. Seidel. "Harmonic Guidance for Surface Deformation." Computer Graphics Forum (Proc. Eurographics) 24:3 (2005), 601-10.

[3] 许栋. 微分网格处理技术[D]. 浙江大学, 2006.

[4] 刘昌森. 三角网格曲面上的laplace算子及其应用[D]. 中国科学技术大学, 2012.

三维网格形变算法(Gradient-Based Deformation)的更多相关文章

  1. 三维网格形变算法(Laplacian-Based Deformation)

    网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...

  2. 三维网格形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)

    在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et ...

  3. 三维动画形变算法(Laplacian-Based Deformation)

    网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...

  4. 高阶Laplace曲面形变算法(Polyharmonic Deformation)

    数学上曲面的连续光滑形变可以通过最小化能量函数来建模得到,其中能量函数用来调节曲面的拉伸或弯曲程度,那么能量函数最小化同时满足所有边界条件的最优解就是待求曲面. 能量函数通常是二次函数形式: 其中S* ...

  5. 三维动画形变算法(Gradient-Based Deformation)

    将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场.该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化.那么当用户拖拽网格 ...

  6. 三维动画形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)

    在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et ...

  7. 三维动画形变算法(Mixed Finite Elements)

    混合有限元方法通入引入辅助变量后可以将高阶微分问题变成一系列低阶微分问题的组合.在三维网格形变问题中,我们考虑如下泛函极值问题: 其中u: Ω0 → R3是变形体的空间坐标,上述泛函极值问题对应的欧拉 ...

  8. 三维网格分割算法(Random Walks)

    首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则 ...

  9. 三维网格去噪算法(L0 Minimization)

    [He et al. 2013]文章提出了一种基于L0范数最小化的三角网格去噪算法.该思想最初是由[Xu et al. 2011]提出并应用于图像平滑,假设c为图像像素的颜色向量,▽c为颜色向量的梯度 ...

随机推荐

  1. 【今日推荐】移动 Web 开发的10个最佳 JavaScript 框架

    选择正确的 JavaScript 框架,对于开发移动 Web 应用程序是至关重要的,也是移动应用程序开发的一项重要任务.开发人员可以使用框架实现的功能高效地达到他们的开发目标.这些预实现的组件采用优秀 ...

  2. html4基础知识梳理

    基础的html知识,只放Xmind的截图. 第一部分: 第二部分: 某些标签的使用示例及注意事项,在印象笔记里.

  3. 【追寻javascript高手之路05】理解事件流

    前言 新的一天又开始了,我们对今天对未来抱有很大期待,所以开始我们今天的学习吧,在此之前来点题外话,还是爱好问题. 周三的面试虽然失败,但是也是很有启迪的,比如之前我就从来没有想过爱好问题,我发现我的 ...

  4. 我们的动机(Our motivation)

    我们的动机(Our motivation) There are many PHP frameworks nowadays, but none of them is like Phalcon (Real ...

  5. linux heartbeat v2/v3 的一点资料

    http://linux-ha.org http://linux-ha.org/wiki/Pacemaker Heartbeat2 http://blog.taggesell.de/index.php ...

  6. [android]AndroidInject框架——我的第一个android小型框架

    作为一个移动应用开发者,随着需求的日益增多,Android项目的越来越臃肿,代码量越来越大, 现在冷静下来回头看看我们的代码,有多少代码跟业务逻辑没什么关系的 所以,本人自不量力,在github上建了 ...

  7. Android二维码识别 开源项目ZXing的编译

    Android二维码识别 开源项目ZXing的编译 Android端的条形码/二维码识别功能 因为手机端的输入不是很方便,所以条形码/二维码的扫描是一种很有效的解决手段. 比较流行的手机应用中,常用的 ...

  8. Phonegap之ios对iPhone6和Plus的闪屏适配 -- xmTan

    故事的发生起于,由于老板强烈要求app在iPhone6和5有一样的工具栏,然后前端妹子用@media为iPhone6和Plus做了样式适配.然后问题来了,竟然奇葩的发现@media样式只对iPhone ...

  9. Android常用设计模式(二)

    Android常用设计模式之观察者模式 观察者设计模式在Android应用中会经常用到,模式原理类似于这样的场景: 用户订报纸,然后在报社登记,报社来统计用户(添加用户),用户也可以取消订阅,报社删除 ...

  10. 深入理解Objective-C Runtime

    一.简介 主要特点: 在OC语言中,函数的调用是属于动态调用的,编译阶段并不确定要调用的函数,在真正的运行时才会根据函数名查找要调用哪个函数. 而在C语言中,函数的调用是在编译阶段就已经确定要调用哪个 ...