通常更加高级的形态学变换,如开闭运算、形态学梯度、“顶帽”、“黑帽”等等,都是可以由常用的腐蚀膨胀技术结合来达到想要的效果。

1.开运算:先腐蚀后膨胀,用于用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积,就是使图片过度更为顺畅,填补小的空隙。

2.闭运算:先膨胀后腐蚀,能够排除小型黑洞(黑色区域),就是不让图片有细小分支向外伸出。

3.形态学梯度(Morphological Gradient):

膨胀图与腐蚀图之差,数学表达式如下:

二值图像进行这一操作可以将团块(blob)的边缘突出出来。我们可以用形态学梯度来保留物体的边缘轮廓

4.顶帽(Top Hat):

顶帽运算(Top Hat)又常常被译为”礼帽“运算。为原图像与上文刚刚介绍的“开运算“的结果图之差,数学表达式如下:

顶帽运算往往用来分离比邻近点亮一些的斑块。当一幅图像具有大幅的背景的时候,而微小物品比较有规律的情况下,可以使用顶帽运算进行背景提取。

5.黑帽(Black Hat):

黑帽(Black Hat)运算为”闭运算“的结果图与原图像之差。数学表达式为:

黑帽运算后的效果图突出了比原图轮廓周围的区域更暗的区域,且这一操作和选择的核的大小相关。

所以,黑帽运算用来分离比邻近点暗一些的斑块。

6.API函数实现:

void  morphologyEx(  InputArray src,  OutputArray dst,  int op,    InputArraykernel,  Pointanchor=Point(-1,-1),   intiterations=1,  intborderType=BORDER_CONSTANT,    constScalar& borderValue=morphologyDefaultBorderValue() );

  • 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像位深应该为以下五种之一:CV_8U, CV_16U,CV_16S, CV_32F 或CV_64F。
  • 第二个参数,OutputArray类型的dst,即目标图像,函数的输出参数,需要和源图片有一样的尺寸和类型。
  • 第三个参数,int类型的op,表示形态学运算的类型,可以是如下之一的标识符:
    • MORPH_OPEN – 开运算(Opening operation)
    • MORPH_CLOSE – 闭运算(Closing operation)
    • MORPH_GRADIENT -形态学梯度(Morphological gradient)
    • MORPH_TOPHAT - “顶帽”(“Top hat”)
    • MORPH_BLACKHAT - “黑帽”(“Black hat“)

另有CV版本的标识符也可选择,如CV_MOP_CLOSE,CV_MOP_GRADIENT,CV_MOP_TOPHAT,CV_MOP_BLACKHAT,这应该是OpenCV1.0系列版本遗留下来的标识符,和上面的“MORPH_OPEN”一样的效果。

  • 第四个参数,InputArray类型的kernel,形态学运算的内核。若为NULL时,表示的是使用参考点位于中心3x3的核。我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。关于getStructuringElement我们上篇文章中讲过了,这里为了大家参阅方便,再写一遍:

其中,getStructuringElement函数的第一个参数表示内核的形状,我们可以选择如下三种形状之一:

    • 矩形: MORPH_RECT
    • 交叉形: MORPH_CROSS
    • 椭圆形: MORPH_ELLIPSE
  • 第五个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于中心。
  • 第六个参数,int类型的iterations,迭代使用函数的次数,默认值为1。
  • 第七个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_ CONSTANT。
  • 第八个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。

这里看的乱七八糟,这是原贴:http://blog.csdn.net/poem_qianmo/article/details/24599073

opencv的学习笔记4的更多相关文章

  1. OpenCV入门学习笔记

    OpenCV入门学习笔记 参照OpenCV中文论坛相关文档(http://www.opencv.org.cn/) 一.简介 OpenCV(Open Source Computer Vision),开源 ...

  2. Android NDK开发及OpenCV初步学习笔记

    https://www.jianshu.com/p/c29bb20908da Android NDK开发及OpenCV初步学习笔记 Super_圣代 关注 2017.08.19 00:55* 字数 6 ...

  3. OpenCV图像处理学习笔记-Day1

    OpenCV图像处理学习笔记-Day1 目录 OpenCV图像处理学习笔记-Day1 第1课:图像读入.显示和保存 1. 读入图像 2. 显示图像 3. 保存图像 第2课:图像处理入门基础 1. 基本 ...

  4. OpenCV图像处理学习笔记-Day03

    OpenCV图像处理学习笔记-Day03 目录 OpenCV图像处理学习笔记-Day03 第31课:Canny边缘检测原理 第32课:Canny函数及使用 第33课:图像金字塔-理论基础 第34课:p ...

  5. OpenCV图像处理学习笔记-Day4(完结)

    OpenCV图像处理学习笔记-Day4(完结) 第41课:使用OpenCV统计直方图 第42课:绘制OpenCV统计直方图 pass 第43课:使用掩膜的直方图 第44课:掩膜原理及演示 第45课:直 ...

  6. 播放一个视频并用滚动条控制进度-OpenCV应用学习笔记二

    今天我们来做个有趣的程序实现:利用OpenCV读取本地文件夹的视频文件,并且在窗口中创建拖动控制条来显示并且控制视频文件的读取进度. 此程序调试花费了笔者近一天时间,其实大体程序都已经很快写出,结果执 ...

  7. 视频文件写入转换之图像处理-OpenCV应用学习笔记五

    在<笔记二>中我们做了视频播放和控制的实现,仅仅算是完成了对视频文件的读取操作:今天我们来一起练习下对视频文件的写入操作:格式转换. 实现功能: 打开一个视频文件play.avi,读取文件 ...

  8. opencv的学习笔记2

    继续昨晚的学习总结,昨晚看到轨迹条的创建就没有看下去了,今天继续: 1.轨迹条的创建: 轨迹条往往会和一个回调函数配合使用,当轨迹条发生改变,就调用这个轨迹条的回调函数 int createTrack ...

  9. 【opencv】学习笔记

    安装 此笔记仅对python36实用 OpenCV装3.4.1.15 指令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv ...

  10. opencv的学习笔记5

    总结原博文中的一些边缘检测算子和滤波器.(Canny算子,  Sobel算子,  Laplace算子以及Scharr滤波器) 首先,一般的边缘检测包括三个步骤: 1)滤波:边缘检测的算法主要是基于图像 ...

随机推荐

  1. linux下tar命令详解

     linux下tar命令详解    tar是Linux环境下最常用的备份工具之一.tar(tap archive)原意为操作磁带文件,但基于Linux的文件操作机制,同样也可适用于普通的磁盘文件.ta ...

  2. javascript使用两个逻辑非运算符(!!)的原因

    javascript使用两个逻辑非运算符(!!)的原因: 在有些代码中可能大家可能会注意到有些地方使用了两个逻辑非运算符,第一感觉就是没有必要,比如操作数是true的话,使用两个逻辑非的返回值还是tr ...

  3. OpenCV 3.0 CvMat and cv::Mat Conversion

    After OpenCV 3.0, CvMat cannot be directly converted to cv::Mat, we need to use function cvarrToMat( ...

  4. [CareerCup] 18.4 Count Number of Two 统计数字2的个数

    18.4 Write a method to count the number of 2s between 0 and n. 这道题给了我们一个整数n,让我们求[0,n]区间内所有2出现的个数,比如如 ...

  5. [CareerCup] 17.8 Contiguous Sequence with Largest Sum 连续子序列之和最大

    17.8 You are given an array of integers (both positive and negative). Find the contiguous sequence w ...

  6. java设计模式。。。转载

    maowang I am a slow walker,but I never walk backwards! 博客园 首页 新随笔 联系 订阅 管理 随笔 - 125  文章 - 0  评论 - 12 ...

  7. android-GridView控件的使用

    GridView 按行列方式显示多个组件(二维布局界面) 数据源(集合)-适配器(SimpleAdapter)-视图界面(GridView),加载适配器-配置监听器(OnItemClickListen ...

  8. Odoo 9 PDF不显示中文字体

    在Ubuntu中安装中文字体:    $ sudo apt-get install ttf-wqy-zenhei    $ sudo apt-get install ttf-wqy-microhei

  9. Google Analytics统计代码GA.JS中文教程

    2010-12-06 11:07:08|  分类: java编程 |  标签:google  analytics  ga  js  代码  |举报|字号 订阅     Google Analytics ...

  10. HTTP协议 (七) Cookie

    HTTP协议 (七) Cookie Cookie是HTTP协议中非常重要的东西, 之前拜读了Fish Li 写的[细说Cookie], 让我学到了很多东西.Fish的这篇文章写得太经典了. 所以我这篇 ...