题意:

求最小的$x\in[1,N]$,使得$x$为$g(x)$最大的数 中最小的一个。

分析:

1.$x$不会有超过$10$个不同质因子。理由:$2 \times 3\times 5...\times 31>2\times 1e9$
$2\times 3\times 5...\times 29<2\times 1e9$。
$2$至$29$质数刚好$10$个。

2.质因子指数不会大于$30$。理由:当取最小的质因子$2$时,$231>2\times 1e9$,$230<2\times 1e9$。

3.若$x=p_1^{c_1}p_2^{c_2}...p_n^{c_n}$,则x的因子个数为$(c_1+1)(c_2+1)...(c_n+1)$。即:$g(x)=(c_1+1)(c_2+1)...(c_n+1)$。

4.质因子连续、指数不升。理由:反证法。若$x=p_1^{c_1}p_2^{c_2}...p_n^{c_n}$,且存在$p_{n-1}<p'<p_n$,则

$x_0=p_1^{c_1}p_2^{c_2}...p_{n-1}^{c_{n-1}}p'^c_n<x$
,$g(x_0)=g(x)$,不符合题意。

若存在$c_n>c_{n-1}$,则将$c_n$,$c_{n-1}$位置交换,也不符合题意

综上所述,可以用上述几个约束条件进行搜索剪枝。

代码就是简单的$DFS$。

#include<iostream>
#include<vector>
typedef long long ll;
using namespace std;
const ll pa[]={,,,,,,,,,,};
ll n,ans=,g=; void dfs(ll p,ll t,ll now,ll ng)
{
if(now>n) return;
if(p>) return;
ll temp=ng;
for(ll i=;i<=t;i++){
now*=pa[p];
ng=temp*(i+);
if(now>n) return;
if(ng>g) ans=now,g=ng;
if(ng==g) ans=min(now,ans);
dfs(p+,i,now,ng);
}
} signed main()
{
cin>>n;
dfs(,,,);
cout<<ans;
return ;
}

洛谷 P1463、POI2002、HAOI2007 反素数的更多相关文章

  1. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

  2. 洛谷 P1463 [POI2002][HAOI2007]反素数

    题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...

  3. Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925

    题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...

  4. [POI2002][HAOI2007]反素数

    题意 反素数 想法 证明这样一个结论 对于一个可行的反素数\(p\) \(p = \sum_{i}^{k} p_{k} ^ {c_k}\) 当 \(p_i > p_j 有 c_i < c_ ...

  5. 数学结论【p1463】[POI2002][HAOI2007]反素数

    Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...

  6. [POI2002][HAOI2007]反素数 数论 搜索 好题

    题目描述: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4, ...

  7. [POI2002][HAOI2007]反素数(Antiprime)

    题目链接 这道题需要用到整数唯一分解定理以及约数个数的计算公式.这里我就不再阐述了. 公式可以看出,只有指数影响约数个数,那么在唯一分解出的乘式中,指数放置的任何位置都是等价的.(即 23*34*57 ...

  8. 【BZOJ1053】[HAOI2007]反素数

    [BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...

  9. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

  10. 【BZOJ1053】[HAOI2007]反素数(搜索)

    [BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...

随机推荐

  1. 比快更快——微软LightGBM

    LightGBM介绍 xgboost是一种优秀的boosting框架,但是在使用过程中,其训练耗时过长,内存占用比较大.微软在2016年推出了另外一种boosting框架--lightgbm,在不降低 ...

  2. QAbstractItemView为截断的项显示ToolTip(使用事件过滤)

    在Qt中想要为QAbstractItemView中长度不够而使得内容被截断的项显示ToolTip,Qt官网有一篇文章介绍使用事件过滤器来显示太长的项,但是没有涵盖图标的情况.显示列头项太长的情况等等, ...

  3. CentOS7中firewalld的安装与使用详解

    一.软件环境 [root@Geeklp201 ~]# cat /etc/redhat-release CentOS Linux release 7.4.1708 (Core) 二.安装firewall ...

  4. qt在windows下的udp通信(最简单)

    qt编程:windows下的udp通信 本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明. 环境: 主机:win7 开发环境:qt 功能: 用udp进行收发 ...

  5. TDD(测试驱动开发)死了吗?

    01.前言 很早之前,曾在网络上见到过 TDD 这 3 个大写的英文字母,它是 Test Driven Development 这三个单词的缩写,也就是“测试驱动开发”的意思——听起来很不错的一种理念 ...

  6. 【Web前端Talk】无聊吗?写个【飞机大战】来玩吧(上篇)

    01前言介绍 微信小游戏是基于微信客户端的游戏,它即点即玩,无需下载安装,体验轻便,可以和微信内的好友一起玩,比如PK.围观等,享受小游戏带来的乐趣.那如何开发一款属于自己的小游戏呢? 源码地址: h ...

  7. shell日期整理

    date 当前日期+时间 # 日期格式化:date+"" - date +"%Y%m%d" 不带横杠分隔符的日期20160107 date +"%Y% ...

  8. hadoop之hive高级操作

    在输出结果较多,需要输出到文件中时,可以在hive CLI之外执行hive -e "sql" > output.txt操作 但当SQL语句太长或太多时,这种方式不是很方便,可 ...

  9. 软件测试入门-测试模型(V型 W型 H型)

    软件测试工程师称为“QA”,质量保证者——这是入门的第一点要学习的. 首先看基本的测试模型 1.“V”型 特点:[活动串行]这是一种古老的瀑布模型,反映了实际和测试之间的关系. 局限:仅仅把测试过程作 ...

  10. SpringCloud Sleuth入门介绍

    案例代码:https://github.com/q279583842q/springcloud-e-book 一.Sleuth介绍   为什么要使用微服务跟踪?它解决了什么问题? 1.微服务的现状? ...