题意

给出一个有n个节点的二叉树的中序遍历,以当前节点为根的树的分数等于左节点分数* 右节点分数+根节点分数,叶子节点的分数等于它本身,求最大分数,以及分数最大的树的先序遍历

一道区间dp题,因为要求为中序遍历,便可dp转移,枚举i,j中的树根k,转移最大值

概念:

先序遍历:根左右

中序遍历;左根右

后序遍历:左右根

状态:f[i][j]从编号由i到j的所以树中最大得分

转移方程 f[i][j]= f[i][k-1] * f[k+1][j] + f[k][k] (k>=i&&k<=j) 保证i<j

第二个问题可以再开个数组root[i][j]表示f[i][j]选择最大子树的根,然后先序遍历输出即可

代码

#include<cstdio>
using namespace std;
int n,v[40],f[40][40],root[40][40];
void dfs(int l,int r){
if(l>r) return;
printf("%d ",root[l][r]);
if(l==r) return;
dfs(l,root[l][r]-1);
dfs(root[l][r]+1,r);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&f[i][i]),f[i][i-1]=1,root[i][i]=i;
for(int i=n;i>=1;i--){
for(int j=i+1;j<=n;++j){
for(int k=i;k<=j;++k){
if(f[i][j]<(f[i][k-1]*f[k+1][j]+f[k][k])) {
f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k];
root[i][j]=k;
}
}
}
}
printf("%d\n",f[1][n]);
dfs(1,n);
return 0;
}

NOIP2003[提高组] 加分二叉树 题解的更多相关文章

  1. noip2003提高组题解

    这一年的前三题虽然难度不高,但是第二题极为繁琐,想在考场上用较短的时间拿到第二题的分数难上加难.所以必须要调整策略,争取拿其他三题的分数.第四题是比较普通的搜索题,分数比较好拿,但是很容易想成树形DP ...

  2. [NOIP2015 提高组] 运输计划题解

    题目链接:P2680 [NOIP2015 提高组] 运输计划 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 看了好长时间题解才终于懂的,有关lca和二分答案的题解解释的不详细,一时 ...

  3. 【算法•日更•第十期】树型动态规划&区间动态规划:加分二叉树题解

    废话不多说,直接上题: 1580:加分二叉树 时间限制: 1000 ms         内存限制: 524288 KB提交数: 121     通过数: 91 [题目描述] 原题来自:NOIP 20 ...

  4. [NOIP2003] 提高组 洛谷P1040 加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  5. 【NOIP2003提高组】加分二叉树

    https://www.luogu.org/problem/show?pid=1040 令f(i,j)表示[i,j]的二叉树中最高的分数.枚举k为根,状转方程:f(i,j)=max{f(i,k-1)* ...

  6. 题解【洛谷P1038/CJOJ1707】[NOIP2003提高组]神经网络

    [NOIP2003]神经网络 Description 问题背景:人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款 ...

  7. 【基础练习】【区间DP】codevs1090 加分二叉树题解

    2003 NOIP TG 题目描写叙述 Description 设一个n个节点的二叉树tree的中序遍历为(l,2,3,-,n),当中数字1,2,3,-,n为节点编号.每一个节点都有一个分数(均为正整 ...

  8. NOIP提高组题目归类+题解摘要(2008-2017)

    因为前几天作死立了一个flag说要把NOIP近十年的题目做一做,并写一个题目归类+题解摘要出来,所以这几天就好好的(然而还是颓废了好久)写了一些这些往年的NOIP题目. 这篇博客有什么: 近十年NOI ...

  9. noip 2013 提高组 Day2 部分题解

    积木大赛: 之前没有仔细地想,然后就直接暴力一点(骗点分),去扫每一高度,连到一起的个数,于是2组超时 先把暴力程序贴上来(可以当对拍机) #include<iostream> #incl ...

随机推荐

  1. Transformations 方块转换 USACO 模拟 数组 数学 耐心

    1006: 1.2.2 Transformations 方块转换 时间限制: 1 Sec  内存限制: 128 MB提交: 10  解决: 7[提交] [状态] [讨论版] [命题人:外部导入] 题目 ...

  2. (转)Linux LVM逻辑卷配置过程详解(创建、扩展、缩减、删除、卸载、快照创建)

    一.预备知识 LVM全称为Logical Volume Manager 逻辑卷管理器,LVM是Linux环境中对磁盘分区进行管理的一种机制,是建立在硬盘和分区之上.文件系统之下的一个逻辑层,可提高磁盘 ...

  3. 图片验证码+session

    生成随机验证码 #!/usr/bin/env python # -*- coding:utf-8 -*- import random from PIL import Image, ImageDraw, ...

  4. Oracle中ROWNUM伪列和ROWID伪列的用法与区别

    做过Oracle分页的人都知道由于Oracle中没有像MySql中limit函数以及SQLServer中的top关键字等,所以只能通过伪列的方式去满足分页功能,在此,不谈分页方法,只从根本上去介绍这两 ...

  5. Resource 使用详解

    极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...

  6. elk系列教程:docker中安装配置elk

    elasticSearch Docker安装elasticsearch: docker pull docker.io/elasticsearch:7.2.0 启动: docker run -p 920 ...

  7. java并发编程(十一)----(JUC原子类)基本类型介绍

    上一节我们说到了基本原子类的简单介绍,这一节我们先来看一下基本类型: AtomicInteger, AtomicLong, AtomicBoolean.AtomicInteger和AtomicLong ...

  8. jmh源码解析-整体架构

    我理解的jmh运行架构图 生成字节码,字节码负责维护测试的状态和调用被测试的方法 默认在fork的进程中进行测试,可以配置多个fork进程,以减少误差 通过线程池,提交每个迭代的测试任务,任务执行后, ...

  9. Python递归函数,二分查找算法

    目录 一.初始递归 二.递归示例讲解 二分查找算法 一.初始递归 递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但 ...

  10. 《深入理解Java虚拟机》-Java代码是如何运行的

    问题一:Java与C++区别 1.Java需要运行时环境,包括Java虚拟机以及Java核心类库等. 2.C++无需额外的运行时,通常编译后的代码可以让机器直接读取,即机器码 问题一:Java为什么要 ...