参考:https://blog.csdn.net/qq_40513946/article/details/79839320

传送门:https://www.nowcoder.com/acm/contest/80/B

题意:输入n,m,求 (n*n-m)/n*n 在 取模998244353下的解;

思路:

 
题目给出的条件是费马小定理,那么可以知道 x负一次方等于x的(p-2)次mod(MOD)  ,所以只要快速幂求出x的(p-2) 就可以了,时间复杂度 O(logMod)。

ac代码:

#include <iostream>
using namespace std; typedef long long ll;
const int md = ;
ll fpow(ll a,ll n)//快速幂
{
ll res = ;
while(n)
{
if(n&)
res = res*a%md;
a = a*a%md;
n>>=;
}
return res;
}
int main(){
int n,m;
cin>>n>>m;
ll t = n*n-m;
ll ans = t%md*(fpow( n*n , md-)%md)%md;
cout<<ans<<endl; return ;
}

牛客Wannafly挑战赛13-BJxc军训-费马小定理、分式取模、快速幂的更多相关文章

  1. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  2. HDU4704Sum 费马小定理+大数取模

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...

  3. hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925

    首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求 ...

  4. HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)

    M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  5. [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

    Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...

  6. 牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)

    牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册, ...

  7. 牛客训练四:Applese 涂颜色(费马小定理+快速幂)

    题目链接:传送门 思路: 考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了. 所以总共有2^n中结果. 由于n太大,所以要用到费马小定理a^n%mod= ...

  8. UVA10200-Prime Time/HDU2161-Primes,例题讲解,牛逼的费马小定理和欧拉函数判素数。

                                                    10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间 ...

  9. Newcoder Wannafly13 B Jxy军训(费马小定理、分数在模意义下的值)

    链接:https://www.nowcoder.com/acm/contest/80/B 题目描述 在文某路学车中学高一新生军训中,Jxc正站在太阳下站着军姿,对于这样的酷热的阳光,Jxc 表示非常不 ...

随机推荐

  1. WIN10安装VC6.0无法使用的解决办法

    WIN10安装VC6.0无法使用的解决办法 VC6.0确实已经太老了 VC6.0实在是很久以前的开发工具了,现在的win10已经对该软件不兼容,但是为了能使抱着怀旧情节的初学者们能像教科书或老前辈们一 ...

  2. Java8中的流操作-基本使用&性能测试

    为获得更好的阅读体验,请访问原文:传送门 一.流(Stream)简介 流是 Java8 中 API 的新成员,它允许你以声明式的方式处理数据集合(通过查询语句来表达,而不是临时编写一个实现).这有点儿 ...

  3. HiveQL DDL 常用QL示例资料

    hive-version2.1.1 DDL操作 Create/Drop/Alter/Use Database 创建数据库 //官方指导 CREATE (DATABASE|SCHEMA) [IF NOT ...

  4. GooglePlay新版排行榜接入

    新版本的GMS的api和老版本的有很大的差异,刚接了一下,在这里留一个记号,以便查阅:判定是否已经登录 private static boolean isSignedIn(Cocos2dxActivi ...

  5. 深扒JVM,对它进行“开膛破肚”式解析!

    1. 打怪升级,你绕不开JVM JVM,对Java程序员进阶而言,是一个绝对绕不开,也不能绕开的话题. 在你打怪升级.进阶蜕变的路上,势必会遇到项目上线中各种OOM.GC等问题,此时JVM的功底就至关 ...

  6. SpringBoot 使用JPA时解决no session的方法

    1.在application.yml中添加 spring.jpa.open-in-view: true 2.在使用查询的方法添加 @Transactional

  7. Powered by .NET Core 进展:用 docker-compose 验证高并发问题嫌疑犯 docker swarm

    相关博文: [故障公告]发布 .NET Core 版博客站点引起大量 500 错误 [网站公告].NET Core 版博客站点第二次发布尝试 暴风雨中的 online : .NET Core 版博客站 ...

  8. 图解SSH隧道功能

    SSH能够对SSH客户端与服务器端之间的网络通信提供加密功能,而且SSH的端口转发功能还能将其它TCP端口的网络数据通过SSH连接来转发,并且自动提供相应的加密和解密服务,这一过程也被称为“隧道”(t ...

  9. DC-2靶机

    DC-2 靶机获取:http://www.five86.com/ 靶机IP:192.168.43.197(arp-scan l) 攻击机器IP:192.168.43.199 在hosts文件里添加:1 ...

  10. 对平底锅和垃圾的O奖论文的整理和学习[2](2018-02-08发布于知乎)

    其实这篇论文看了一段时间,愣是没看出来这个模型怎么建立的.虽然看不懂,但是有一些部分还是很喜欢. 首先是摘要: 摘要分为八段 第一段:背景引入,太空垃圾的问题日益严重. 第二段:本文工作,包括基本的i ...