深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)
1、准备数据
把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1。每一行表示一个训练样本。如下图所示。

其中前三列表示数据(特征),最后一列表示数据(特征)的标签。注意:标签需要从0开始编码!
2、实现全连接网络
这个过程我就不多说了,如何非常简单,就是普通的代码实现,本篇博客的重点在于使用自己的数据,有些需要注意的地方我在后面会做注释。直接上代码
#隐含层参数设置
in_units=3 #输入神经元个数
h1_units=5 #隐含层输出神经元个数 #第二个隐含层神经元个数
h2_units=6 W1=tf.Variable(tf.truncated_normal([in_units,h1_units],stddev=0.1)) #隐含层权重,W初始化为截断正态分布
b1=tf.Variable(tf.zeros([h1_units])) #隐含层偏执设置为0
W2=tf.Variable(tf.truncated_normal([h1_units,h2_units],stddev=0.1)) #第二个隐含层权重,W初始化为截断正态分布
b2=tf.Variable(tf.zeros([h2_units])) #第二个隐含层偏执设置为0 W3=tf.Variable(tf.zeros([h2_units,2])) #输出层权重和偏执都设置为0
b3=tf.Variable(tf.zeros([2])) #定义输入变量x和dropout比率
x=tf.placeholder(tf.float32,[None,3]) #列是
keep_prob=tf.placeholder(tf.float32) #定义一个隐含层
hidden1=tf.nn.relu(tf.matmul(x,W1)+b1)
hidden1_drop=tf.nn.dropout(hidden1,keep_prob) #定义第二个隐藏层
hidden2=tf.nn.relu(tf.matmul(hidden1_drop,W2)+b2)
hidden2_drop=tf.nn.dropout(hidden2,keep_prob)
需要注意的地方
in_units=3 #输入神经元个数,和特征的维度对应起来
x=tf.placeholder(tf.float32,[None,3]) #和特征的维度对应起来
3、实现损失函数
标准的softmax和交叉熵,不多说了。
y=tf.nn.softmax(tf.matmul(hidden2_drop,W3)+b3) #定义损失函数和选择优化器
y_=tf.placeholder(tf.float32,[None,2]) #列是2,表示两类,行表示输入的训练样本个数,None表示不定 corss_entropy=tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))
train_step=tf.train.AdagradOptimizer(0.3).minimize(corss_entropy)
需要注意的地方:
y_=tf.placeholder(tf.float32,[None,2]) #有几类就写几,我写的是两类,所以就是2
4、从txt中读取数据,并做处理
重点来了,首先从txt中把数据读取出来,然后对标签进行独热编码,什么是独热编码?索引表示类别,是哪个类别这一维就是非零(用1)。代码实现:
data=np.loadtxt('txt.txt',dtype='float',delimiter=',')
#将样本标签转换成独热编码
def label_change(before_label):
label_num=len(before_label)
change_arr=np.zeros((label_num,2)) #2表示有两类
for i in range(label_num):
#该样本标签数据要求从0开始
change_arr[i,int(before_label[i])]=1
return change_arr
#用于提取数据
def train(data):
data_train_x=data[:7,:3] #取前几行作为训练数据,7表示前7行,3表示取前三列,排除数据标签
data_train_y=label_change(data[:7,-1])
return data_train_x,data_train_y
data_train_x,data_train_y=train(data)
需要注意的地方在代码中我都做了注释,不再赘述。
5、开始训练和测试
训练部分
for i in range(5): #迭代,取batch进行训练
img_batch, label_batch = tf.train.shuffle_batch([data_train_x, data_train_y], #随机取样本
batch_size=2,
num_threads=2,
capacity=7,
min_after_dequeue=2,
enqueue_many=True)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess) img_batch,label_batch=sess.run([img_batch,label_batch]) train_step.run({x:img_batch,y_:label_batch,keep_prob:0.75}
#预测部分
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
print(accuracy.eval({x:data_train_x,y_:data_train_y,keep_prob:1.0}))
这样就全部流程完成。其中网络结构可以做相应的修改,核心在于如何从txt中读取自己的数据输入到全连接神经网络(多层感知机)中进行训练和测试。
当然,也可以在定义变量的时候直接输入,不用从txt中读取。即:
image=[[1.0,2.0,3.0],[9,8,5],[9,5,6],[7,5,3],[6,12,7],[8,3,6],[2,8,71]]
label=[[0,1],[1,0],[1,0],[1,0],[1,0],[0,1],[0,1]]
image_test=[[9,9,9]]
label_test=[[0,1]]
直接定于数据的话,适合小数据量的情况,大数据量的情况并不适用。
好了,本篇博客介绍到此结束。下一篇介绍如何处理图像数据。
以上便是本章分享内容,有问题,可以进群871458817交流在群内下载资料学习。最后,感谢观看!
深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)的更多相关文章
- 深度学习tensorflow实战笔记(2)图像转换成tfrecords和读取
1.准备数据 首选将自己的图像数据分类分别放在不同的文件夹下,比如新建data文件夹,data文件夹下分别存放up和low文件夹,up和low文件夹下存放对应的图像数据.也可以把up和low文件夹换成 ...
- 深度学习tensorflow实战笔记 用预训练好的VGG-16模型提取图像特征
1.首先就要下载模型结构 首先要做的就是下载训练好的模型结构和预训练好的模型,结构地址是:点击打开链接 模型结构如下: 文件test_vgg16.py可以用于提取特征.其中vgg16.npy是需要单独 ...
- Keras入门——(1)全连接神经网络FCN
Anaconda安装Keras: conda install keras 安装完成: 在Jupyter Notebook中新建并执行代码: import keras from keras.datase ...
- [深度学习][图像处理][毕设][笔记][安装环境][下载地址]安装VS2013、matconvnet、cuda、cudnn过程中产生的一些记录,2018.5.6号
最近半个多月,被cuda等软件折磨的死去活来,昨天下午,终于安装好了环境,趁着matlab正在,在线下载VOT2016数据集,3点睡眼惺忪被闹醒后,睡不着,爬上来写这份记录. 先记录一下自己电脑的基本 ...
- tensorflow中使用mnist数据集训练全连接神经网络-学习笔记
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: ...
- 深度学习Keras框架笔记之Dense类(标准的一维全连接层)
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- 深度学习入门实战(二)-用TensorFlow训练线性回归
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能 ...
- MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...
随机推荐
- Docker5-docker私库的搭建及常用方法-harbor-registry方式
一.简介 1.官方已经提供registry镜像为什么还需要用harbor 1)registry缺少镜像清理机制,可以push但是不能删除,耗费空间 2)registry缺乏相应的扩展机制 3)harb ...
- 滴滴热力图-php版(后面有js版本)
) * ) ) * ) {) * *pi() / ) * ]) % ) {//在多边形外return false;} else { //在多边形内return true;} }
- 一步步剖析spring bean生命周期
关于spring bean的生命周期,是深入学习spring的基础,也是难点,本篇文章将采用代码+图文结论的方式来阐述spring bean的生命周期,方便大家学习交流. 一 项目结构及源码 1. ...
- Angular.js 入门(一)
最近在学习angular.js,为此方便加深对angular.js前端框架的理解,因此写下这篇angular.js入门 首先介绍下什么是angular.js? AngularJS 是一个 JavaSc ...
- ini 文件操作指南
今天总结一篇工具箱文章. ini 类型文件通常作为程序的初始化文件.不同于我们常见的配置文件通篇 key-value 的键值对形式,ini 文件在键值对的基础之上还有分类节点,比如我们常见的 Mysq ...
- SSH服务协议
1.SSH介绍: SSH 是Secure Shell Protocol 的简写,由IETF网络小组(Network Working Group)制定:在进行数据传输之前,SSH先对联机数据包通过加密技 ...
- Celery的使用完成异步任务与定时任务
0917自我总结 Celery的使用 一.官方文档 Celery 官网:http://www.celeryproject.org/ Celery 官方文档英文版:http://docs.celeryp ...
- Python_文本的读写操作
[需求] 1. 获取文本内容,提取内容中的可用信息,对信息进行清洗等一系列处理 2. 算法输出一些内容,保存到文本文件中,便于使用 [函数] 在Python中open()函数是用来打开文件的,包括文本 ...
- 关于_GNU_SOURCE宏
是在features.h中用于特性控制的一个功能测试宏 /user/include/features.h /* If _GNU_SOURCE was defined by the user, turn ...
- Cocos2d-x入门之旅[4]场景
我们之前讲了场景图(Scene Graph) 的概念,继续之前你先要知道 场景图决定了场景内节点对象的渲染顺序 渲染时 z-order 值大的节点对象会后绘制,值小的节点对象先绘制 HelloWorl ...